2,747 research outputs found

    Solid weak BCC-algebras

    Full text link
    We characterize weak BCC-algebras in which the identity (xy)z=(xz)y(xy)z=(xz)y is satisfied only in the case when elements x,yx,y belong to the same branch

    Implicit integration scheme for porous viscoplastic potential-based constitutive equations

    Get PDF
    This paper deals with a viscoplastic potential-based model allowing thermomechanical damage behavior modeling of porous materials. The model describes rate dependent effects, hardening, creep as well as defects coalescence and propagation. Kinematic and isotropic hardening effects are taken into account by a set of internal state variables. The integration and implementation of the model into the FE code using a fully implicit integration scheme is exposed. Finally, it 19s used to predict mechanical behaviour degradation of solder layers used in power electronic packaging. Stress-strain behaviour and the evolution of volumic fraction of voids for the material under cyclic loading are presented

    Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table

    Full text link
    More than half a century after the fundamental, spherical shell structure in nuclei has been established, theoretical predictions indicate that the shell-gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TdDT_d^D ('double-tetrahedral') group of symmetry, exact or approximate. The corresponding strong shell-gap structure is markedly enhanced by the existence of the 4-dimensional irreducible representations of the group in question and consequently it can be seen as a geometrical effect that does not depend on a particular realization of the mean-field. Possibilities of discovering the corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma

    Characterizations of quasitrivial symmetric nondecreasing associative operations

    Get PDF
    We provide a description of the class of n-ary operations on an arbitrary chain that are quasitrivial, symmetric, nondecreasing, and associative. We also prove that associativity can be replaced with bisymmetry in the definition of this class. Finally we investigate the special situation where the chain is finite

    Test of Nuclear Wave Functions for Pseudospin Symmetry

    Get PDF
    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.Comment: 11 pages, 4 figures, minor changes in text and figures to conform with PRL requirement

    Nonaxial-octupole effect in superheavy nuclei

    Full text link
    The triaxial-octupole Y32_{32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2^- bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Time-odd components in the mean field of rotating superdeformed nuclei

    Get PDF
    Rotation-induced time-odd components in the nuclear mean field are analyzed using the Hartree-Fock cranking approach with effective interactions SIII, SkM*, and SkP. Identical dynamical moments J(2){{\cal J}^{(2)}} are obtained for pairs of superdeformed bands 151^{151}Tb(2)--152^{152}Dy(1) and 150^{150}Gd(2)--151^{151}Tb(1). The corresponding relative alignments strongly depend on which time-odd mean-field terms are taken into account in the Hartree-Fock equations.Comment: 23 pages, ReVTeX, 6 uuencoded postscript figures include

    Point symmetries in the Hartree-Fock approach: Symmetry-breaking schemes

    Full text link
    We analyze breaking of symmetries that belong to the double point group D2h(TD) (three mutually perpendicular symmetry axes of the second order, inversion, and time reversal). Subgroup structure of the D2h(TD) group indicates that there can be as much as 28 physically different, broken-symmetry mean-field schemes --- starting with solutions obeying all the symmetries of the D2h(TD) group, through 26 generic schemes in which only a non-trivial subgroup of D2h(TD) is conserved, down to solutions that break all of the D2h(TD) symmetries. Choices of single-particle bases and the corresponding structures of single-particle hermitian operators are discussed for several subgroups of D2h(TD).Comment: 10 RevTeX pages, companion paper in nucl-th/991207

    GDR Feeding of the Highly-Deformed Band in 42Ca

    Full text link
    The gamma-ray spectra from the decay of the GDR in the compound nucleus reaction 18O+28Si at bombarding energy of 105 MeV have been measured in an experiment using the EUROBALL IV and HECTOR arrays. The obtained experimental GDR strength function is highly fragmented, with a low energy (10 MeV) component, indicating a presence of a large deformation and Coriolis effects. In addition, the preferential feeding of the highly-deformed band in 42Ca by this GDR low energy component is observed.Comment: 6 pages, 2 figures, Proceedings of the Zakopane2004 Symposium, to be published in Acta Phys. Pol. B36 (2005
    corecore