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Abstract

This paper deals with a viscoplastic potential-based model allowing thermomechanical damage 

behavior modeling of porous materials. The model describes rate dependent effects, hardening, creep as 

well as defects coalescence and propagation. Kinematic and isotropic hardening effects are taken into 

account by a set of internal state variables. The integration and implementation of the model into the FE 

code using a fully implicit integration scheme is exposed. Finally, it’s used to predict mechanical 

behaviour degradation of solder layers used in power electronic packaging. Stress-strain behaviour and 

the evolution of volumic fraction of voids for the material under cyclic loading are presented. 
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1. Introduction

Solder joints are basic parts in power electronic modules which are subjected to severe 

thermomechanical cyclic loading, involving fatigue and creep at high temperatures [1,2]. Many factors 

could have influence on the solder behaviour. Among these factors, we note the metallurgical aspect and 

the initial state of the solder material, the amount of porosity in the layer, the temperature history during 

the manufacturing stages. All these factors induced a set of defects of solder matrix, and as resulting 

effects, they modify their thermomechanical behaviour leading to a fall in solder lifetime and so of the 

whole packaging assembly. Volumic fraction of porosity may be considerable within the total volume of 

the solder layer and thus leads to weaken the whole thermomechanical behaviour of the junction [3]. The 
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fact that lifetime is influenced by defects coming before and during service, proves the need of pertinent 

theoretical models which are able to reproduce entire material behaviour during thermal-mechanical 

loading cycles and to accurately predict material degradation. The models have to take into account 

hardening variables and porous damage for viscoplastic materials which still a challenging task. 

 

Nomenclature

ijkl  Fourth order elasticity tensor 

ijkl  Fourth order damaged elasticity tensor 

Iijkl    Fourth order unit tensor 

ij    Second order unit tensor 

G     Shear modulus (MPa) 

E    Young modulus (MPa) 

,      Lamé elastic modulus (MPa) 

v Poisson ratio 

     Coefficient of Thermal Expansion (ppm/K) 

n = 1/m     Sensitivity parameter to inelastic strain rate  

Q     Activation energy (J/mol) 

RG    Gaz constant (8.314 J/mol.K) 

R     Dragstress variable (MPa) 

T     Absolute temperature (K) 

Tf    Melting temperature (K) 

k    Boltzmann constant 

R
0
    initial yield stress (MPa) 

f0     Initial volumic fraction of voids  

fn      Density of void nuclei 

n     Mean value of the Gauss distribution 

sn    Width of the Gauss distribution 

D     isotropic resistance to plastic deformation (MPa) 

' '3
:

2
ij ijJ o o    Second invariant of the o deviator tensor   

ij, sij    Stress and deviator stress tensors (MPa) 

ij
(k)

    Backstress tensor (MPa) k = 1,2 
e

ij     Elastic tensor
 

in

ij     Inelastic strain tensor 

A0     Pre-exponential material parameter 

p Effective inelastic strain increment 

Df  < 1     Coefficient relating the surfacic to the volumic fraction of voids  

B     Temperature-independent material parameters 

Isotropic saturation limit (MPa) 

' Isotropic hardening rate 

Ck    Hardening modulus 

bk    Hardening rate controlling parameter 



2. Formulation of the viscoplastic constitutive equations

We introduce an internal state variable based unified viscoplastic model combined with a porous 

damage as first step for the viscoplastic-damage predictions. The damage model is based on Haghi and 

Anand framework [4], which considers a Duva and Hutchinson approaches [5], for the evolution of the 

volumic fraction of voids. As for the existing unified models, the constitutive equations are composed of 

a flow law for the inelastic deformation and a set of evolution equations for the state variables. From the 

thermodynamic viewpoint, the inelastic flow is derived from the free Helmholtz energy. This free energy 

depends on the volumic fractions of voids f and the internal state variables. Once the free energy 

expressed, then the flow law and the state variables can be directly derived from it. In our case, the 

kinematic and isotropic hardening rules are expressed respectively as: 
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ij ijp  is the effective inelastic strain rate. Thus, the total backstress is expressed as the 

sum of the ( )k
ij such as ( )k

ij ij

k

. Note that the kinematic hardening formulation could represent 

hardening, dynamic recovery and static thermal recovery effects. Description of thermal variation effects 

is also improved by introducing the energy activation term in the static thermal recovery term. 

Let’s remember that for virgin materials, the inelastic flow rate is derived from a viscoplastic potential , 

which could be expressed in our case as follows: 
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Where  is expressed as: 
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and,  is a thermal diffusivity parameter expressed as an Arrhenius function. 
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<g> is defined as g if g  0 else g = 0. 

By introducing the volumic fraction of voids f, the viscoplastic potential for porous materials is calculated 

using Duva and Hutchinson approaches based on the expression: 

        p = F×   (6) 

F is given by Haghi and Anand as function of the effective stress triaxiality X and takes the form: 
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. C is used here for voids interaction effects.  

Usually, g is assumed to be constant and takes the value of 1.3 for a corresponding value of 0.161 for m. 

From Zavaliangos and Anand [6], an alternative form of g(f,m) is applicable for a wide range of m and is 

written as: 
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The evolution of the volumic fraction of voids is governed by the next equation taking into account void 

nucleation and neglecting elastic compressibility. 
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means that nucleation is governed by a Gauss distribution. 

Finally, the normality rules permit to determine the inelastic flow law by deriving the porous viscoplastic 

potential expression in order to have, 

pin

ij

ij

(11)

The built model in its actual form makes it possible to take into account kinematic and isotropic 

hardening, time-dependent and time-independent effects, and degradation due to the volumic fraction of 

voids.  

3. Development of the integration algorithm

The model is composed of a set of differential constitutive equations. Weber and Anand developed an 

integration scheme for isothermal deformations of fully dense materials [7]. Zavaliangos and Anand 

presented an extension of this scheme for porous materials based on Zavaliangos framework [8]. The aim 

of this fully implicit, fully coupled integration scheme is to find the solution of the following equation.  

in in

ij ij
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If we assume that 
1n

in

ij
is the solution at iteration n+1, then we can write: 
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That allows determining the solution increment by transforming equation (13) into, 
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The value of
1n

in

ij
is then calculated by a Newton-Raphson iteration scheme.  

As a result, if the relative error

1

1

n n
in in

ij ij tol

n
in

ij

, the solution is retained, else the calculation is 

repeated for the next iteration step n + 1. The integration algorithm is resumed in the following steps 

below: 

 - Assume an inelastic strain increment tensor  

 - Compute the volumic fraction of voids using equation (10) 

 - Compute the variables of Haghi and Anand damage model using (7), (8), and (9) 

 - Compute the trial stress tensor using Hooke’s law. 

 - Compute the effective stress triaxiality X  

 - Compute the internal state variables in the equations (1) and (2) 

 - Compute residual function ijh   

a - If the residual function is less than the fixed tolerance then retain computed variables and 

stress as solution and go to next increment. 

b -Else update inelastic strain increment using (14) and go to step . 

4. Numerical results

The exposed algorithm was implemented in the Abaqus® FE code. Pure mechanical tests on 

Sn96Ag3Cu1 solder were used to prove the capability of the model. In this way, we first simulate uniaxial 

tensile and relaxation tests with many strain rate conditions. The simulations results shown in figure 1 

and 2, proved the accuracy of the algorithm.  

             
 (a) (b) 

Fig. 1. Uniaxial simulated tests at various temperatures, (a) tensile curves at different strain rates, (b) relaxation curves 

  

Figure 1(a) shows the ability of the model to reproduce recovery effects. In the case of SnAgCu, 

kinematic hardening is dominant, and the saturation of stress is observable especially at high temperature. 

We denote a reduction of the final stress from 60 MPa at 35°C to nearly 30 MPa at 95°C. On figure 1(b) 

relaxation tests at various temperatures demonstrate the effect of the thermal or static recovery on the 

stress response. In a second way, we’ve simulated cyclic tests to illustrate the damage behaviour coupled 

with the viscoplastic law. In the ten first cycles of the tensile loading, the mean volumic fraction of voids 

is constant so it means that there is no nucleation of voids but only regular voids growth due to “open-

close” cycles (Figure 2(a) stage A). This fact is improved also by taken into account voids shrinkage. 



Afterwards, nucleation effects are more apparent (Figure 2(a) stage B), and the mean value of the voids 

fraction increases continuously due to the increase of inelastic deformation until a value of 5.5×10
-2

.  

The density of void nuclei fn is in fact activated by equivalent plastic strain p in the matrix. Starting from 

this value, the void fraction increases quite slowly which indicates a nearly saturated state in the material. 

At last, figure 2 (b) show volumic fraction of voids distribution around a hole drilled in a plate submitted 

to the uniaxial cyclic loading. The two stages, A and B, are illustrated. 

 
 

A 

 

B 

 

(a)  (b)  

Fig. 2. Damage behavior of the model, (a) evolution of the volumic fraction of voids during cycling test, (b) 
volumic fraction of voids distribution around a hole at two stages (A and B) of the cycling test 

5. Conclusion

Porous viscoplasticity in SnAgCu solder is studied within a porous viscoplastic potential-based model. 

The model assumes an initial uniform distribution of voids in the whole volume and follows the 

phenomenological concept of internal state variables is able to describe hardening, creep and static 

thermal recovery among others. The implicit integration scheme proves to be stable and successfully 

implemented into finite element code Abaqus®. Effect of nucleation is observed clearly after the first few 

cycles and increases under a nearly saturated level of about 6.×10
-2

. 
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