64,289 research outputs found

    A Layman's guide to SUSY GUTs

    Full text link
    The determination of the most straightforward evidence for the existence of the Superworld requires a guide for non-experts (especially experimental physicists) for them to make their own judgement on the value of such predictions. For this purpose we review the most basic results of Super-Grand unification in a simple and clear way. We focus the attention on two specific models and their predictions. These two models represent an example of a direct comparison between a traditional unified-theory and a string-inspired approach to the solution of the many open problems of the Standard Model. We emphasize that viable models must satisfy {\em all} available experimental constraints and be as simple as theoretically possible. The two well defined supergravity models, SU(5)SU(5) and SU(5)×U(1)SU(5)\times U(1), can be described in terms of only a few parameters (five and three respectively) instead of the more than twenty needed in the MSSM model, \ie, the Minimal Supersymmetric extension of the Standard Model. A case of special interest is the strict no-scale SU(5)×U(1)SU(5)\times U(1) supergravity where all predictions depend on only one parameter (plus the top-quark mass). A general consequence of these analyses is that supersymmetric particles can be at the verge of discovery, lurking around the corner at present and near future facilities. This review should help anyone distinguish between well motivated predictions and predictions based on arbitrary choices of parameters in undefined models.Comment: 25 pages, Latex, 11 figures (not included), CERN-TH.7077/93, CTP-TAMU-65/93. A complete ps file (1.31MB) with embedded figures is available by request from [email protected]

    Single-photon signals at LEP in supersymmetric models with a light gravitino

    Get PDF
    We study the single-photon signals expected at LEP in models with a very light gravitino. The dominant process is neutralino-gravitino production (e+e- -> chi+ G) with subsequent neutralino decay via chi->gamma+G, giving a gamma+E_miss signal. We first calculate the cross section at arbitrary center-of-mass energies and provide new analytic expressions for the differential cross section valid for general neutralino compositions. We then consider the constraints on the gravitino mass from LEP 1 and LEP161 single-photon searches, and possible such searches at the Tevatron. We show that it is possible to evade the stringent LEP 1 limits and still obtain an observable rate at LEP 2, in particular in the region of parameter space that may explain the CDF e+e+gamma+gamma+E_T,miss event. As diphoton events from neutralino pair-production would not be kinematically accessible in this scenario, the observation of whichever photonic signal will discriminate among the various light-gravitino scenarios in the literature. We also perform a Monte Carlo simulation of the expected energy and angular distributions of the emitted photon, and of the missing invariant mass expected in the events. Finally we specialize the results to the case of a recently proposed one-parameter no-scale supergravity model.Comment: 31 pages, LaTeX, 14 figures (included

    New phenomena in the standard no-scale supergravity model

    Get PDF
    We revisit the no-scale mechanism in the context of the simplest no-scale supergravity extension of the Standard Model. This model has the usual five-dimensional parameter space plus an additional parameter ξ3/2m3/2/m1/2\xi_{3/2}\equiv m_{3/2}/m_{1/2}. We show how predictions of the model may be extracted over the whole parameter space. A necessary condition for the potential to be stable is StrM4>0{\rm Str}{\cal M}^4>0, which is satisfied if \bf m_{3/2}\lsim2 m_{\tilde q}. Order of magnitude calculations reveal a no-lose theorem guaranteeing interesting and potentially observable new phenomena in the neutral scalar sector of the theory which would constitute a ``smoking gun'' of the no-scale mechanism. This new phenomenology is model-independent and divides into three scenarios, depending on the ratio of the weak scale to the vev at the minimum of the no-scale direction. We also calculate the residual vacuum energy at the unification scale (C0m3/24C_0\, m^4_{3/2}), and find that in typical models one must require C0>10C_0>10. Such constraints should be important in the search for the correct string no-scale supergravity model. We also show how specific classes of string models fit within this framework.Comment: 11pages, LaTeX, 1 figure (included), CERN-TH.7433/9

    New Precision Electroweak Tests of SU(5) x U(1) Supergravity

    Full text link
    We explore the one-loop electroweak radiative corrections in SU(5)×U(1)SU(5)\times U(1) supergravity via explicit calculation of vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. Experimentally, these parameters are obtained from a global fit to the set of observables Γl,Γb,AFBl\Gamma_{l}, \Gamma_{b}, A^{l}_{FB}, and MW/MZM_W/M_Z. We include q2q^2-dependent effects, which induce a large systematic negative shift on ϵ1\epsilon_{1} for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). The (non-oblique) supersymmetric vertex corrections to \Zbb, which define the ϵb\epsilon_b parameter, show a significant positive shift for light chargino masses, which for tanβ2\tan\beta\approx2 can be nearly compensated by a negative shift from the charged Higgs contribution. We conclude that at the 90\%CL, for m_t\lsim160\GeV the present experimental values of ϵ1\epsilon_1 and ϵb\epsilon_b do not constrain in any way SU(5)×U(1)SU(5)\times U(1) supergravity in both no-scale and dilaton scenarios. On the other hand, for m_t\gsim160\GeV the constraints on the parameter space become increasingly stricter. We demonstrate this trend with a study of the m_t=170\GeV case, where only a small region of parameter space, with \tan\beta\gsim4, remains allowed and corresponds to light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). Thus SU(5)×U(1)SU(5)\times U(1) supergravity combined with high-precision LEP data would suggest the presence of light charginos if the top quark is not detected at the Tevatron.Comment: LaTeX, 11 Pages+4 Figures(not included), the figures available upon request as an uuencoded file(0.4MB) or 4 PS files from [email protected], CERN-TH.7078/93, CTP-TAMU-68/93, ACT-24/9

    Analytical Behaviour of Positronium Decay Amplitudes

    Get PDF
    Positronium annihilation amplitudes that are computed by assuming a factorization approximation with on-shell intermediate leptons do not exhibit good analytical behaviour. Using dispersion techniques, we find new contributions that interfere with the known results to restore analytical properties. Those new amplitudes which cannot be obtained using standard factorized amplitude formalism, contribute at order alpha^2. Therefore they have to be evaluated before any theoretical conclusion can be drawn upon the orthopositronium lifetime puzzle.Comment: LaTeX, 22 pages, 3 eps figure

    Parapositronium Decay and Dispersion Relations

    Get PDF
    Positronium decay rates are computed at the one-loop level, using convolution-type factorized amplitudes. The dynamics of this factorization is probed with dispersion relations, showing that unallowed approximations are usually made, and some ordre alpha^2 corrections missed. Further, we discuss the relevance of the Schrodinger wavefunction as the basis for perturbative calculations. Finally, we apply our formalism to the parapositronium two-photon decay.Comment: LaTeX, 13 pages, 1 eps figur

    Supersymmetric photonic signals at LEP

    Get PDF
    We explore and contrast the single-photon and diphoton signals expected at LEP 2, that arise from neutralino-gravitino (e^+ e^- -> chi + gravitino -> gamma + E_miss) and neutralino-neutralino (e^+ e^- -> chi + chi -> gamma + gamma + E_miss) production in supersymmetric models with a light gravitino. LEP 1 limits imply that one may observe either one, but not both, of these signals at LEP 2, depending on the values of the neutralino and gravitino masses: single-photons for m_chi > Mz and m_gravitino < 3 x 10^-5 eV; diphotons for m_chi < Mz and all allowed values of m_gravitino.Comment: 11 pages, LaTeX, 4 figures (included). Shortened version to appear in Physical Review Letter

    Treatment of dogs with compensated myxomatous mitral valve disease with spironolactone-a pilot study

    Get PDF
    Spironolactone improves outcome in dogs with advanced myxomatous mitral valve disease (MMVD). Its efficacy in preclinical MMVD is unknown. The hypothesis was the administration of spironolactone to dogs with compensated MMVD demonstrating risk factors for poorer prognosis will decrease the rate of disease progression. The aim was to provide pilot data to evaluate preliminary effects and sample size calculation for a definitive clinical trial
    corecore