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Abstract

Positronium annihilation amplitudes that are computed by assuming a
factorization approximation with on-shell intermediate leptons do not
exhibit good analytical behaviour. Using dispersion techniques, we find
new contributions that interfere with the known results to restore an-
alytical properties. Those new amplitudes which cannot be obtained
using standard factorized amplitude formalism, contribute at O

(

α2
)

.
Therefore they have to be evaluated before any theoretical conclusion
can be drawn upon the orthopositronium lifetime puzzle.

PACS Nos : 36.10.Dr, 12.20.Ds, 11.10.St, 11.55.Fv

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34195017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-ph/0006018v1


1 Introduction

Positronium is a bound state of electron and positron. In this paper, we will
be interested in the triplet state, orthopositronium, whose decay rate into
3γ has been precisely measured :

Γexp (o-Ps→ 3γ) =







7.0398 (29) µsec−1 Tokyo[1]
7.0514 (14) µsec−1 Ann Arbor (Gas)[2]
7.0482 (16) µsec−1 Ann Arbor (Vacuum)[3]

The corresponding theoretical predictions which include perturbative
QED corrections to a non-relativistic treatment of the bound state wave-
function have been computed also with high accuracy (see for example [4],
[5], [6], [7]):

Γ (o-Ps→ 3γ) = α6m
2
(

π2 − 9
)

9π

[

1 −A
α

π
− α

3

2
log

1

α
+Bo

(α

π

)2
− 3α3

2π
log2 1

α

]

=
(

7.0382 +Bo0.39 × 10−4
)

µ sec−1

with A = 10.286606 (10), α the fine structure constant and m the electron
mass. Recent theoretical efforts have focused on a more complete evaluation
of the non-logarithmic O

(

α2
)

perturbative corrections, with the result Bo =
44.52 (26) [8] or, equivalently

Γ (o-Ps→ 3γ) = 7.039934 (10) µ sec−1

This result renders the theoretical prediction still closer to the experimental
measurement of Ref. [1].

Positronium is a test ground for bound state treatment in Quantum Field
Theory. The first try dates back to the 40′s, with decay rates expressed
through a factorized formula [9]

Γ (o-Ps→ 3γ) =
1

3
|φo|2 ·

(

4vrelσ
(

e+e− → 3γ
))

vrel→0

with φo the Schrödinger positronium wavefunction at the origin, σ (e+e− → 3γ)
the total cross section for e+e− → 3γ and vrel the relative velocity of e+

and e− in their center of mass frame. Since then, more sophisticated decay
amplitudes have been constructed, and systematic procedures for calculat-
ing corrections have been developed [10]. However, the basic factorization
of the bound state dynamics from the annihilation process has remained as
a basic postulate. For low order corrections, this approximation is unques-
tionable, but for O

(

α2
)

corrections, factorization has to be tested. Indeed,
non-perturbative phenomena responsible for the off-shellness of the electron
and positron inside the positronium are of O

(

α2
)

. In other words, to get
a sensible theoretical prediction at O

(

α2
)

, one must carefully analyze how
binding energy effects enter the general factorization approach.

2



In a recent paper [11], we showed that the factorization of the bound
state dynamics from the annihilation process can be given a firm ground-
ing through dispersion relations. From a fully relativistic model, we recov-
ered the standard factorized amplitudes used in the literature, and found
some forgotten O

(

α2
)

contributions. Those amplitudes are gauge invari-
ant, since they are expressed in terms of scattering amplitudes for on-shell
e+e−. When applied to orthopositronium, however, the appearance of those
on-shell intermediate leptons brings infrared singularities [12], giving an in-
correct analytical behaviour to the amplitude o-Ps → 3γ. Indeed, basic
principles require that this amplitude vanishes in the soft photon limit, since
it involves only neutral bosons [13]. One must conclude that the standard
approaches are not complete and that they can only approximately describe
the positronium decay.

The purpose of the present paper is to restore the analytical behaviour
of positronium decay amplitudes. The relativistic model we used in [11] to
describe p-Ps → γγ has the correct analytical behaviour when applied to
o-Ps → 3γ since only off-shell constituents appear. Indeed, we will find
along with the known factorized-type amplitudes already found for para-
positronium, a whole class of non-factorizable processes which enforce the
positronium decay amplitude to vanish in the soft photon limit. Those new
amplitudes were absent for p-Ps→ γγ, but will contribute to o-Ps → 3γ at
O
(

α2
)

.
This paper is organized as follows. We first give a brief description of

the derivation of factorized amplitudes from our relativistic model. Then we
analyze the simple decay p-Dm → γe+e−, and show in detail how the ana-
lytical behaviour of the amplitude is restored by new contributions. Finally,
we discuss the orthopositronium decay to three photons and describe all the
new contributions. In the appendix, we present a short discussion of the de-
cay K0

S → γe+e−, the hadronic counterpart of the decay p-Dm→ γe+e−, in
order to show the generality of the arguments developed for electromagnetic
bound states.

2 Factorized Amplitude from a Loop Model

Here we briefly review the recently proposed method [11] to derive factorized
amplitudes for bound state decays.

The decay rates for positronium are calculated in a loop model. The
positronium first decays into a virtual electron-positron pair, which subse-
quently annihilates into real or virtual photons (an odd number for ortho-
states, an even number for para-states). The coupling of the positronium
to its constituents is described by a form factor, denoted by FB . It is not
assumed to be a constant, since a constant form factor would amount to
consider positronium as a point-like state.
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In our model, the decay amplitudes are (see for example figure 4)

Mµν...
(

1S → A
)

=

∫

d4q

(2π)4
FBTr

{

γ5

i

6q − 1
2 6P −m

Γµν... i

6q + 1
2 6P −m

}

(1)

Mµν...
(

3S → A
)

= eα

∫

d4q

(2π)4
FBTr

{

γα i

6q − 1
2 6P −m

Γµν... i

6q + 1
2 6P −m

}

(2)

for parapositronium (pseudoscalar) and orthopositronium (vector, with po-
larization eα) respectively . The Γµν... is the scattering amplitude for off-
shell e+e− with incoming momenta 1

2P + q and 1
2P − q into the final state

A, m is the electron mass, P the positronium four-momentum and FB =
FB

(

q2, q · P
)

. From these amplitudes, the decay widths are calculated as

Γ
(

2J+1S → A
)

=
1

2J + 1

1

2M

∫

dΦA

∑

pol

∣

∣Mµν...
(

2J+1S → A
)

ε∗µε
∗
ν ...
∣

∣

2

with M the positronium mass.
What we have shown in our previous article [11] is that when one ex-

presses the loop integration in (1) or (2) via a dispersion relation ([14],
[15]), one ends up with a factorized convolution-type amplitude, i.e. for
parapositronium:

Mµν...
(

1S → A
)

=
C

2

∫

d3k

(2π)3 2Ek

ψ
(

k2
)

Tr
{

γ5

(

−6k′ +m
)

Γµν...
(

k, k′, l1, ...
)

(6k +m)
}

(3)
with ψ

(

k2
)

the bound state wavefunction, Γµν... (k, k′, l1, ...) the reduced
scattering amplitude for on-shell e+e− with momenta k and k′, k = −k′

and C =
√
M/m (M is the positronium mass). The analogous form for

orthopositronium decay is obtained using the substitution γ5 →6e. The form
factor FB is related with ψ

(

k2
)

through

FB = CφoF
(

k2
) (

k2 + γ2
)

with φoF
(

k2
)

= ψ
(

k2
)

, φo being the Schrödinger wavefunction at the ori-
gin, and γ2 = m2 −M2/4 (related to the binding energy and fine-structure
constant through EB = M − 2m = −mα2/4).

3 Paradimuonium Decay into γe+e−

The present section concerns paradimuonium, the singlet µ+µ− bound state
[16]. This state has not been observed yet. The reason to consider the decay
p-Dm → γe+e− is that it is the simplest process where a photon is kine-
matically allowed to have a vanishing energy. Therefore, we will be able to
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test whether the proposed factorization procedure (3) gives a correct ana-
lytical behaviour to the amplitude in the soft photon limit. The simplicity
of the process comes from the pseudoscalar nature of the paradimuonium,
which allows a manifestly gauge invariant treatment throughout. Note that
the positronium decay p-Ps → γνν via a Z0 has the same dynamics. Af-
ter having analyzed this simple decay, we will be ready to tackle the more
interesting process o-Ps→ γγγ.

The decay p-Dm → e+e−γ is shown in figure 1. When the form factor
FB appearing at the vertex p-Dm → µ+µ− allows a change of variable
q → −q, the two amplitudes can be combined into

M
(

p-Dm→ e+e−γ
)

= 8me3εµνρσkρtσε
∗
µ (k)

{u (p) γνv (p′)}
t2 + iε

I
(

M2, x
)

(4)
with x = 2ω/M the reduced photon energy, M the dimuonium mass and m
the muon mass. The loop integral, which can be viewed as an effective form
factor, is given by

I
(

P 2, x
)

= η

∫

d4q

(2π)4
FB

1
(

q − 1
2P
)2 −m2

1
(

q + 1
2P
)2 −m2

1
(

q − 1
2P + k

)2 −m2

where η = P 2/M2 and t2 = P 2(1 − x). Gauge invariance is ensured by the
factorized tensor structure, i.e. by the antisymmetric Levi-Civita tensor.
I
(

P 2, x
)

is given by the same expression as the two-photon decay integral
we encountered previously [11], the only difference being that t2 6= 0.

The differential width is given by

dΓ (p-Dm→ e+e−γ)

dx
=

16α3

3
m2M3

∣

∣I
(

M2, x
)
∣

∣

2
ρ (x, a)

with the phase space factor

ρ (x, a) =

√

1 − a

1 − x
[a+ 2 (1 − x)]

x3

(1 − x)2

where a = 4m2
e/M

2, and the bounds on x are [0, 1 − a].
We are going to calculate the integral I

(

M2, x
)

using dispersion rela-
tions. The main difference with the two-photon decay case is the appearance
of two different cuts (figure 2). We have shown [11] that considering the ver-
tical cuts is strictly equivalent to the decay amplitude calculation done using
formula (3) where Γµ is the scattering amplitude µ+ (k′)µ− (k) → γγ∗ →
e+e−γ with on-shell muons. Standard approaches found in the literature are
then obtained by making an O

(

α2
)

approximation in (3). Obviously, those
approaches completely miss the oblique cuts. What we are going to show is
that those forgotten cuts contribute at the order of γ2 = m2−M2/4 ≈ α2/4,
and more importantly, that the amplitude for p-Dm→ e+e−γ has a correct
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soft-photon limit behaviour only if we take all the cuts into account. By this
we mean that each cut gives a contribution to the amplitude that behaves
as a constant when the photon energy goes to zero. The combination of
the vertical and oblique cuts, on the contrary, forces the amplitude to van-
ish in that limit. We thus recover the analytical behaviour expected from
Low’s theorem [13] for the decay of p-Dm → γγ∗ involving only neutral
bosons (for p-Dm→ γe+e−, infrared divergences cannot arise from electron
bremsstrahlung processes due to selection rules).

3.1 Soft photon limit property of the absorptive part

To keep the discussion as general as possible, we extract the imaginary part
of I

(

P 2, t2
)

without specifying the form factor FB . The absorptive part is
found by cutting the relevant propagators as

Im I1

(

P 2, x
)

= η

∫

d4q

2 (2π)4
FB

2πiδ
(

(

q − 1
2P
)2 −m2

)

2πiδ
(

(

q + 1
2P
)2 −m2

)

(

q − 1
2P + k

)2 −m2

Im I2

(

P 2, x
)

= η

∫

d4q

2 (2π)4
FB

2πiδ
(

(

q + 1
2P
)2 −m2

)

2πiδ
(

(

q − 1
2P + k

)2 −m2
)

(

q − 1
2P
)2 −m2

for the vertical and oblique cuts, respectively. By a straightforward integra-
tion, the first expression gives (s = P 2):

Im I1 (s, x) =
η

s

FB

(

q0 = 0, |q| =
√

s/4 −m2
)

16πx
ln

[

1 +
√

1 − 4m2/s

1 −
√

1 − 4m2/s

]

θ
(

s− 4m2
)

(5)
while the second one cannot be completely integrated without specifying
FB :

Im I2 (s, x) =
η

s

1

16πx

∫ qmax

qmin

dq0
FB

(

q0, |q| =
√

q20 + q0
√
s+ s/4 −m2

)

q0
θ

(

s− 4m2

1 − x

)

(6)
with the bounds given by

qmin = −x
√
s

4

(

1 +

√

1 − 4m2

s

1

1 − x

)

, qmax = −x
√
s

4

(

1 −
√

1 − 4m2

s

1

1 − x

)

(7)
Interestingly, the second cuts contribute for q0 6= 0. This is in sharp con-

trast with the two-photon decay, since there only the first cuts exist. Fur-
ther, approximated bound state wavefunction where a δ (q0) appears cannot
be used ([5], [6], [7]), and one should revert to the full four-dimensional
Bethe-Salpeter wavefunction (for example the Barbieri-Remiddi one [17]).
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Let us now demonstrate an important point, i.e. that in the soft photon
limit, the combination Im I1 (s, x)+ ImI2 (s, x) behaves as a constant when
x → 0 despite the fact that each cut diverges in that limit. This will
guarantee that the imaginary part of the whole amplitude vanishes in the
soft photon limit thanks to the presence of kρ in the tensor structure of (4).
This behaviour is what one expects from Low’s theorem [13]. For all the
form factors we considered, the behaviour of the combination ImI1 (s, x) +
Im I2 (s, x) when x→ 0 is summarized by :

ImI1 (s, x) + Im I2 (s, x)
x→0→ η

s

1

16π





FB (0)
√

1 − 4m2

s

+

√
s− 4m2

2

∂FB

∂q
(0)





Specifically, the form factors of interest are constructed from the Schrödinger
wavefunction (see [11]). Let us recall their definition and give the limit
obtained when using each of them :

F I
B ≡ Cφo

8πγ

q2 + γ2
(8)

⇒ Im I1 (s, x) + Im I2 (s, x)
x→0→ η

s

Cφo

2
γ

(

s/4 − γ2 −m2
)

√

1 − 4m2

s

(

γ2 −m2 +
s

4

)2

F II
B ≡ Cφo

32πγ3

(q2 + γ2)2
(9)

⇒ ImI1 (s, x) + Im I2 (s, x)
x→0→ η

s

Cφo

2
γ3

(

4γ2 − 3
(

s− 4m2
))

√

1 − 4m2

s

(

γ2 −m2 +
s

4

)3

i.e. constant limits. Remark that for a constant form factor FB = FConst
B ,

the limit is simply

Im I1 (s, x) + ImI2 (s, x)
x→0→ η

s

FConst
B

16π

1
√

1 − 4m2/s

It is easy to verify that this result is indeed what can be calculated from the
imaginary parts :
Im I1 (s, x) + ImI2 (s, x) =

η

s

FConst
B

16πx

[

ln

[

1+

√

1− 4m2

s

1−
√

1− 4m2

s

]

θ
(

s− 4m2
)

− ln

[

1+
√

1− 4m2

s(1−x)

1−
√

1− 4m2

s(1−x)

]

θ
(

s− 4m2

1−x

)

]

In conclusion, the absorptive part of the amplitude is seen to vanish.
Thus, we expect that the dispersive part will also vanish in that limit. The
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oblique cuts, omitted from standard analyzes, are seen to be essential to
maintain good analytical properties of the amplitude.

In the appendix, the restoration of analyticity by a cancellation among
the vertical and oblique cuts is presented in the context of the kaon decay
K0

S → e+e−γ via a charged pion loop. In this analysis, the form factor
describing the K → ππ vertex is taken as a constant. This decay is inter-
esting since there is a close similarity between this hadronic decay process
and the present QED bound state decay. The main conclusion is that even
if charged particles are present in intermediate states, the amplitude has to
vanish in the soft photon limit, as expected from the fact that the decays
K0

S → γγ∗ or p-Dm → γγ∗ involve only neutral bosons. Further, this K0
S

decay provides a physically sensible process where one can analyze the con-
stant form factor assumption, since for such a loosely bound system as the
p-Dm a constant form factor cannot be realistic.

We will now evaluate the contribution of each cut for the case of the
Schrödinger momentum wavefunction form factor F I

B in (8 ). In doing so,
we will gain a better understanding of the analyticity restoration at the
level of the differential decay rate for p-Dm → e+e−γ. The purpose of the
next sections is only illustrative, and the discussion can be straightforwardly
transcribed for the advocated improved form factor F II

B (9) (see[11]).

3.2 The vertical cuts reproduce standard approach results

To precisely show what happens when the oblique cuts are forgotten, we
compute here the rate with the vertical cuts only. The present derivation is
therefore equivalent to standard analyses.

For our computation, we take the first cut imaginary part given by (5).
The real part is found through an unsubstracted dispersion relation with
η = s/M2 (see [11], [14], [15]) :

I1

(

M2, x
)

= ReI1

(

M2, x
)

=
Cφo

πM2

2γ

x

∫ ∞

4m2

ds

(s−M2)2
ln

[

1 +
√

1 − 4m2/s

1 −
√

1 − 4m2/s

]

=
Cφo

M3

1

x

[

2

π
arctan

M

2γ

]

(10)

where the first equality holds since M2 < 4m2. Remark that for x→ 1, the
second cuts vanish (see 6) and (10) reproduce the result obtained in [11] for
the parapositronium two-photon decay.

Inserting the result for I1 into the expression of the differential rate with
C2 = M/m2 and |φo|2 = α3m3/8π, we get:

dΓ (p-Dm→ γe+e−)

dx
=
α6m

6π

(

4m2

M2

)
∣

∣

∣

∣

2

π
arctan

M

2γ

∣

∣

∣

∣

2 ρ (x, a)

x2
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Note that, independently of the value for γ, the spectrum is always linear
in x due to the 1/x in (10). This is an incorrect soft photon behaviour since
Low’s theorem requires a cubic spectrum instead [12] (when the amplitude
behaves as x, the rate ∼ x2 and an additional x comes from phase-space) .
By expanding the differential rate around γ = 0, we get

dΓ (p-Dm→ γe+e−)

dx
=
α6m

6π

(

1 − α

π
+

1

4
α2 − 25

96π
α3 +

3

64
α4 + O

(

α5
)

)

ρ (x, a)

x2

As lowest order, we recover the standard result:

dΓ (p-Dm→ γe+e−)

dx
=
α6mµ

6π

ρ (x, a)

x2
(11)

Note that the order α corrections disappear when using the form factor F II
B

(see [11]). For completeness, the total rate is simply :

Γ
(

p-Dm→ γe+e−
)

=
α6m

6π
F (a)

(

4m2

M2

) ∣

∣

∣

∣

2

π
arctan

M

2γ

∣

∣

∣

∣

2

with

F (a) =

[

4

3

√
1 − a (a− 4) + 2 log

(

1 +
√

1 − a

1 −
√

1 − a

)]

3.3 The oblique cut contribution to the rate

We have just seen that the vertical cuts suffice to reproduce the lowest order
decay rate. It is interesting to investigate how the oblique cuts can restore
the analytical behaviour of the spectrum without affecting this lowest order
evaluation.

The imaginary part corresponding to the oblique cuts is, from (6),

Im I2 (s, x) =
η

s

Cφo

16πx

∫ qmax

qmin

dq0
q0

8πγ

q20 + q0
√
s+ s/4 −m2 + γ2

θ

(

s− 4m2

1 − x

)

=
η

s

Cφo

16πx
8πγ [H (qmax) −H (qmin)] θ

(

s− 4m2

1 − x

)

with qmin, qmax given in (7) and

H (q) = − 2
√
s

M (M2 − s)
ln

[

M +
√
s+ 2q

M −√
s− 2q

]

+
2

M2 − s
ln

[

(
√
s+ 2q)

2 −M2

q2

]

We should now use an unsubstracted dispersion relation to get I2

(

M2, x
)

.
This integral is quite complicated and not very interesting for the present
purpose. Instead, we revert to numerical evaluation of the dispersion integral

9



for I2

(

M2, x
)

= ReI2

(

M2, x
)

as a function of x, and compare it to (10).
In the figure 3, we plot the vertical cuts contribution (dashed line)

x · M
3

Cφo

I1

(

M2, x
)

=
2

π
arctan

M

2γ

and the complete result (solid line)

x · M
3

Cφo

I
(

M2, x
)

= x · M
3

Cφo

[

I1

(

M2, x
)

+ I2

(

M2, x
)]

=
2

π
arctan

M

2γ
+
Mγ

2π

∫ +∞

4m2

1−x

ds

s−M2
[H (qmax (x)) −H (qmin (x))]

for m = 1,M = 1.999 (i.e. γ ≈ 0.03) and for m = 1,M = 1.99994 (γ ≈
0.0077). For x→ 0, one can verify that x · I

(

M2, x
)

→ 0. The figures show
that near zero the two cuts interfere destructively in order to maintain a
correct analytical behaviour for the whole amplitude. Away from x = 0, the
oblique cut contributions are strongly suppressed relatively to the vertical
one, and this suppression increases as γ decreases (I2 → 0 when γ → 0).
As can be seen on the graph, it is typically for x . γ that the oblique cut
contributes. Therefore, we can summarize by giving a simple representation
of the different contributions to the amplitude. From the figure 3, one
can see that the behaviours of the vertical cuts, the oblique cuts and their
combination are quite precisely modelled as

I1 ∼ 1

x
,I2 ∼ − γ/M

x (x+ γ/M)
⇒ I = I1 + I2 ∼

(

1

x+ γ/M

)

As a consequence, the spectrum behaves as

dΓ (p-Dm→ γe+e−)

dx
∼ |I|2 ρ (x, a) ∼ x3

(

1

x+ γ/M

)2

∼ x

(

x

x+ γ/M

)2

(12)
i.e. a linear spectrum when γ → 0 (11), and a x3 spectrum when x is small.
The effect of γ 6= 0 is therefore to soften the photon spectrum and slightly
reduce the total width. This behaviour is exactly what we postulated in a
previous work [12].

In conclusion, the oblique cuts have a small contribution to the decay
rate comparatively to the vertical cuts. However, their presence is essen-
tial to guarantee the analytical properties of the amplitude expected from
Low’s theorem. Further, when tackling O

(

α2
)

corrections, one must include
contributions from the oblique cuts.

4 Orthopositronium Decay to three Photons

We now turn to the interesting decay o-Ps → γγγ. We start as usual with
the loop model amplitude. Dispersion techniques express that amplitude
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into separate contributions, arising from different cuts in figure 4. Since only
off-shell intermediate leptons appear in the loop, the complete amplitude has
a correct soft photon behaviour. This implies that one must consider all the
cuts to preserve the analytical properties of the amplitude. This is one
conclusion of the previous section.

Let us give the loop model amplitude

Mµνρ (o-Ps→ γγγ) = e3eα (P )

∫

d4q

(2π)4
FBTr

{

γα 1

6q − 1
2 6P −m

Γµνρ 1

6q + 1
2 6P −m

}

(13)

where the vertex is given by six amplitudes grouped as

Γµνρ = Γµνρ
1 + Γµνρ

2 + Γµνρ
3

with

Γµνρ
1 = γν 1

6q − 1
2 6P+ 6 l2 −m

γρ 1

6q + 1
2 6P−6 l1 −m

γµ

+γµ 1

6q − 1
2 6P+ 6 l1 −m

γρ 1

6q + 1
2 6P−6 l2 −m

γν

Γµνρ
2 = γν 1

6q − 1
2 6P+ 6 l2 −m

γµ 1

6q + 1
2 6P−6 l3 −m

γρ

+γρ 1

6q − 1
2 6P+ 6 l3 −m

γµ 1

6q + 1
2 6P−6 l2 −m

γν

Γµνρ
3 = γµ 1

6q − 1
2 6P+ 6 l1 −m

γν 1

6q + 1
2 6P−6 l3 −m

γρ

+γρ 1

6q − 1
2 6P+ 6 l3 −m

γν 1

6q + 1
2 6P−6 l1 −m

γµ

and P = l1 + l2 + l3. The amplitudes in Γµνρ
1 are shown on figure 4. Using

charge-conjugation, we can show that the two drawn amplitudes are equal.
The proof of this is in close analogy with the demonstration of Furry’s
theorem, and requires a change of integration variable q → −q. This change
is allowed for the form factor (see (8), (9)). Therefore, one can forget one
term in each Γµνρ

i and multiply the other by 2. In the following, to keep the
combinational as clear as possible, we will continue to consider all the six
diagrams.

Let us now review the contributions aarising from the possible cuts in
figure 4.

4.1 The vertical cut reproduces standard approach results

First we have the six vertical cuts shown on figure 5. As demonstrated in the
paper [11], those vertical cuts reproduce the known result: their combination
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is what is calculated with (3), i.e. at lowest order [4]

Γ (o-Ps→ γγγ) =
2
(

π2 − 9
)

9π
α6m

This result is obtained in the static limit, i.e. with FB ∝ δ(3) (q).
If this limit is not taken, one has to go through the integration of the

convolution-type amplitude (3). As explained in [11], the order of the cor-
rections that will arise from that integration depends on the explicit form
for FB . Let us recall that for the parapositronium decay to two photons, we
found that the form factors (8) led to O (α) corrections and higher, while
(9) gave corrections starting at O

(

α2
)

.
Finally, it is important to note that the six vertical cuts are separately

gauge invariant since the scattering amplitude for on-shell e+e− → γγγ is.

4.2 The oblique cuts and the structure dependent contribu-

tions

The oblique cuts are depicted in figure 6 for the photon 1 on the positron-
ium side. Similar cuts for the photon 2 or 3 singled out are easily drawn.
The oblique cuts are not gauge invariant, contrary to the vertical ones.
To see this, it suffices to note that each of these oblique cuts is, from the
optical theorem, a product of a scattering amplitude e+e− → γγ times a
bremsstrahlung amplitude o-Ps → e+e−γ. Gauge invariance is broken by
the bremsstrahlung amplitude, because the form factor is evaluated at dif-
ferent momenta for different cuts. To visualize the situation, let us change
the momentum parametrization and draw amplitudes for o-Ps→ e+e−γ (l1)
as shown in figure 7. Obviously, when contracted by lµ1 , the two amplitudes
fail to cancel each other, due to the different momentum dependences of FB

:

Mµ
Brem1 = eFB (p1 + l1, p2)

{

u (p1) γ
µ i

6p1+ 6 l1 −m
γαv (p2)

}

eα (P )

+eFB (p1, p2 + l1)

{

u (p1) γ
α i

−6p2−6 l1 −m
γµv (p2)

}

eα (P )

= ieFB (p1 + l1, p2)

{

u (p1)
2pµ

1 + γµ 6 l1
2p1 · l1

γαv (p2)

}

eα (P )

+ie2FB (p1, p2 + l1)

{

u (p1) γ
α−2pµ

2−6 l1γµ

2p2 · l1
v (p2)

}

eα (P )

and when contracted by l1,µ :

l1,µMµ
Brem1 = ie [FB (p1 + l1, p2) − FB (p1, p2 + l1)] {u (p1) γ

αv (p2)} eα (P )

Therefore, one should add to these diagrams the structure dependent am-
plitude Mµ

SD1(figure 7). The new direct coupling between o-Ps, e+, e− and
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γ must be such that the combination of the bremsstrahlung graphs and this
structure graph is gauge invariant. For the paradimuonium, we have not
considered such structure terms because the amplitude was gauge invari-
ant throughout thanks to the factorized tensor structure (see (4)). This is
a peculiar feature of the two-photon decay of pseudoscalar positronium or
dimuonium state.

Let us now turn to the soft photon behaviour. The structure terms
do not alter the cancellation among cuts in the soft photon limit (see the
corresponding discussion for K0

S decay in the appendix). Indeed, Low’s
theorem applied to the bremsstrahlung plus structure dependent amplitudes
gives the following expansion around l1 = 0 (see [13], [18]):

Mµ
Brem + Mµ

Struct =

iFB (p1, p2)

{

u (p1)

[

2pµ
1 + γµ 6 l1
2p1 · l1

γα − γα 2pµ
2+ 6 l1γµ

2p2 · l1

]

v (p2)

}

eα (P ) + O (l1)

i.e. terms of order (l1)
0 cancel because Mµ

Brem +Mµ
Struct is gauge invariant.

Importantly, note that the form factor is now evaluated at
(

p2
1 = m2, p2

2 = m2
)

,
i.e. at the same point as for the vertical cuts. Since for a constant form fac-
tor the combination of all the cuts necessarily behaves correctly in the soft
photon limit, and since a momentum dependence in the form factor only
modifies O (l1) terms, the conclusion follows.

Remark that the appearance of these new structure contributions could
have been guessed from the start, since the loop model amplitude (13) fails
to be gauge invariant due to momentum dependences in the form factor.
More precisely, the Ward identity l1,µMµνρ (o-Ps→ γγγ) = 0 is verified
only if the form factor allows for linear changes of the integration variable
like q → q + l1. A general form factor will not allow such shifts and one
must supplement the loop model with new structure dependent amplitudes,
as noted in [12]. The dispersion technique we followed here is interesting
since we get a more precise information on their origin, and we are able to
constraint them through Low’s theorem.

The same discussion can be made for the photons 2 and 3. One ends
up with twelve oblique cuts, to which six structure dependent amplitudes
must be added. All these new contributions should become important at
the order γ2 ≈ α2/4, so that one can really question the completeness of the
results given in the literature [8].

5 Conclusions

We have shown that the standard approaches used to calculate positronium
decay rates cannot be used to fully evaluate O

(

α2
)

corrections. In the
case of orthopositronium, many new contributions arise at that order from
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processes where the electron emerging from the bound state decay is off-
shell. Those contributions are essential to preserve the basic property of
analyticity of the positronium decay amplitude, i.e. its vanishing in the soft
photon limit. Further, gauge invariance requires some interplay between
the annihilation process and the bound state dynamics through structure
dependent amplitudes.

All these new contributions vanish in the static limit, i.e. when the form
factor is replaced by a delta function δ(3) (q). Therefore, one can view these
as non-perturbative effects arising from the binding of the constituents in the
bound state. Indeed, the size of the corrections is fixed by the γ2 appearing
in the bound state wavefunction. Concerning this wavefunction, forms where
the dependence on the energy q0 is replaced by a δ (q0) should not be used
because it is specifically for non-zero value of the energy that the additional
diagrams contribute. This raises the question of the form for FB to be used.
Let us recall that in [11], we advoquate the use of the improved form factor
F II

B instead of the usual Schrödinger momentum wavefunction.
In conclusion, it should now be clear that O

(

α2
)

corrections as given
in the literature are rather incomplete. A lot of work is still needed before
a definite theoretical prediction up to that order can be compared to ex-
periment. Even if the theoretical basis seems settled, the orthopositronium
life-time puzzle remains an open question.
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6 Appendix : Kaon Radiative Decay K0
S → γe+e−

The amplitude for K0
S → γe+e− is computed at lowest order in a pion loop

model. The pion is treated as a point-like charged particle, which allows
simple scalar QED treatment. Special attention is paid to the low energy
behaviour of the amplitude.

6.1 Decay Amplitude and Loop Integration

The amplitude for kaon decay into γe+e− is given by

M
(

K0
S → γe+e−

)

= −2ie3M
(

K0
S → π+π−

)

ε∗µ (k)
{u (p) γνv (p′)}

t2

×
∫

ddq

(2π)d
Mµν

(

π+π− → γγ
)

with t = p + p′ = P − k. The π+π− → γγ amplitude arises from the one-
photon (figure 8a) and two-photon (the so-called seagull graph, figure 8b)
coupling amplitudes as

Mµν
(

π+π− → γγ
)

=
(2q − k)µ (2q + t)ν − gµν

(

q2 −m2
)

(

(q + t)2 −m2
)(

(q − k)2 −m2
)

(q2 −m2)

with m the pion mass. The amplitude M
(

K0
S → π+π−

)

, taken as a con-
stant, has been factored out. The integration is done using dimensional
regularization to preserve gauge invariance and get a finite result. We ob-
tain
∫

ddq

(2π)d
Mµν (π+π− → γγ)

=
−i

(4π)2

∫ 1

0
dx

∫ 1−x

0
dy
[

4xy
∆ [gµν (k · t) − tµkν ] + y(1−2y)

∆ gµνt2
]

The denominator function is ∆ = m2 (1 − 4 (a− b)xy + 4by (y − 1)) with
the definitions a = M2/4m2, b = t2/4m2 and M the kaon mass. In the
kaon rest-frame, b = M2 (1 − ω) /4m2 with ω the reduced photon energy
2k0/M . When integrating over Feynman parameters, the last term vanishes.
Therefore, the gauge invariance of the amplitude becomes manifest:

M
(

K0
S → γe+e−

)

=
−2e3

(4π)2
M
(

K0
Sπ

+π−
) 1

m2
F (a, b)×

ε∗µ (k)
{

u (p) γνv
(

p′
)} gµν (k · t) − tµkν

t2
(14)

F (a, b) is the Feynman parameter integral

F (a, b) =

∫ 1

0
dy

∫ 1−y

0
dx

4xy

1 − 4 (a− b) xy + 4by (y − 1) + iε

The prescription iε gives the sign of the imaginary part.
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6.2 Feynman Parameter Integration via Dispersion Relations

To calculate F (a, b), we shall use dispersion relations (see for example [14],
[15]). A direct integration is possible, but we shall gain insight into the
dynamics of the process by using dispersion techniques.

Absorptive Part Extraction

A first integration over the Feynman parameters gives

F (a, b) =

∫ 1

0
dy

[

y − 1

a− b
+

lnK (b) − lnK (a)

4y (a− b)2
+
b (y − 1) (lnK (b) − lnK (a))

(a− b)2

]

(15)
where lnK (x) = ln (1 + 4x (y − 1) y − iε). The imaginary part of F (a, b)
comes from the values of y for which the argument of a logarithm is negative.
There the logarithm imaginary part is −iπ. Integrating on the relevant y
values, we find

ImF (a, b) =
π
(

ln
[√
a+

√
a− 1

]

− b
√

a−1
a

)

2 (a− b)2
θ (a− 1)

−
π

(

ln
[√

b+
√
b− 1

]

− b
√

b−1
b

)

2 (a− b)2
θ (b− 1) (16)

or, recalling the definition of a and b (see [19])

ImF (a, b) =







4πm4

M4ω2
ln





1 +
√

1 − 4m2

M2

1 −
√

1 − 4m2

M2



− 2πm2

M2

1 − ω

ω2

√

1 − 4m2

M2







θ
(

M2 − 4m2
)

−







4πm4

M4ω2
ln





1 +
√

1 − 4m2

M2(1−ω)

1 −
√

1 − 4m2

M2(1−ω)



− 2πm2

M2

1 − ω

ω2

√

1 − 4m2

M2(1−ω)







θ

(

M2 − 4m2

1 − ω

)

(17)
Let us consider the figure 9. Obviously, the first line in (17) corresponds

to the vertical cuts (which contribute only if the decaying particle’s mass
M2 is greater than (2m)2) while the second line corresponds to the oblique
cuts (which contribute only if the virtual photon energy t2 is greater than
(2m)2).

Further, one can see that in the soft photon limit ω → 0 (or b → a),
ImF (a, b) behaves as a constant. Indeed, applying L’Hospital’s rule twice,
we get

ImF

(

M2

4m2
,
M2 (1 − ω)

4m2

)

ω→0
= π

2m4

M4

1
√

1 − 4m2/M2
(18)
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while individually the contribution of each cut is divergent as 1/(a − b)2 ∼
1/ω2. We will come back to this point later.

Dispersive Part Integral

In order to write down the unsubstracted dispersion integral, let us ex-
press ImF (a, b) as a function of the available energy through a (s) = s/4m2

and b (s) = s (1 − ω) /4m2. Then

ReF (a (so) , b (so)) =
P

π

∫

ds

s− so
ImF (a (s) , b (s)) (19)

with so < 4m2, such that we can omit the principal part. For such a
kinematics F (a (so) , b (so)) = ReF (a (so) , b (so)). In the next section we
shall analytically continue F to the physical value so = M2. The result of
(19) is easily obtained in terms of the integrals
∫ 1

0

dy

yo − y
ln
[

1+
√

1−y

1−
√

1−y

]

= 2arcsin2

√

1

yo
,

∫ 1

0

dy

yo − y

√

1 − y = 2−2
√

yo − 1 arcsin

√

1

yo

valid for yo > 1 (see [14]). We can write F (a, b) with 0 < a < 1 and
0 < b < 1 as

F (a, b) = − 1

2 (a− b)
+

1

(a− b)2

(

1

2
(f (a) − f (b)) + b (g (a) − g (b))

)

(20)

in terms of f (x) ≡ arcsin2 √x and g (x) ≡
√

1−x
x

arcsin
√
x.

Analytic Continuation

The results for a > 1 and b > 1, are obtained by analytic continuation of
(20). The analytic continuation of f (a) and g (a) are

f (x) = arcsin2
(√
x
)

= −
(

ln
(√
x+

√
x− 1

)

− 1

2
iπ

)2

g (x) =

√

1 − x

x
arcsin

√
x =

√

x− 1

x

(

ln
(√
x+

√
x− 1

)

− 1

2
iπ

)

The equalities hold for x ∈ C, Imx > 0. The right hand sides define the
analytical continuation for x > 1. Hence the result is conveniently expressed
as (20) with

f (x) =

{

arcsin2 (
√
x) 0 < x < 1

−
(

ln
(√
x+

√
x− 1

)

− 1
2 iπ
)2

x > 1
(21)

g (x) =







√

1−x
x

arcsin (
√
x) 0 < x < 1

√

x−1
x

(

ln
(√
x+

√
x− 1

)

− 1
2 iπ
)

x > 1
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Had we chosen to analytically continue f and g in the lower half complex
plane, their imaginary parts would have had the opposite sign. One can
verify from (21) that the upper half complex plane analytic continuation
reproduces ImF (a, b) as given in (16). This result corresponds to [20] where
a sign mistake has to be corrected, and to [21], [22].

6.3 Decay Width, Differential Width and Low’s Theorem

The differential decay width is given by dΓ
(

K0
S → e+e−γ

)

= 1
2M

∑

spin |M|2 dΦ3.
After a straightforward integration over the electron-positron phase-space,
we get the differential rate in terms of the reduced photon energy ω:

dΓ
(

K0
S → e+e−γ

)

/dω

Γ
(

K0
S → π+π−

) =
α3

3π3

∣

∣

∣
F
(

1
aπ
, 1−ω

aπ

)
∣

∣

∣

2

a2
π

√
1 − aπ

√

1 − ae

1 − ω
[ae + 2 (1 − ω)]

ω3

(1 − ω)2

with ae = 4m2
e/M

2 and aπ = 4m2/M2 = 1/a. The bounds on the ω
integration are ωmin = 0 and ωmax = 1− ae. A numerical integration of the
differential rate gives the prediction for the rate K0

S → e+e−γ relatively to
K0

S → π+π−

Rπ+π− =
Γ
(

K0
S → e+e−γ

)

Γ
(

K0
S → π+π−

) ≃ 4.70 × 10−8 (22)

where the real and imaginary part of F
(

1
aπ
, 1−ω

aπ

)

contribute for 1.26×10−8

and 3.43 × 10−8, respectively.
Let us turn to the soft photon behaviour of the differential width. We

have to analyze the loop integral function F
(

1
aπ
, 1−ω

aπ

)

. This function tends

to a constant for very low ω:

F

(

1

aπ
,
1 − ω

aπ

)

ω→0→ −aπ

4
+

a2
π

4 (aπ − 1)
g

(

1

aπ

)

(23)

(note that for aπ < 1, the imaginary part of (23) is the same as in (18)).
Let us emphasize the strong cancellation between the two cuts in the soft
photon limit. Individually, each cut diverges as ω2, but their combination is
convergent. Since the rest of the amplitude tends to zero like ω (due to the
[gµν (k · t) − tµkν ] factor), Low’s theorem is verified: the amplitude behaves
as ω near ω = 0. The resulting spectrum is thus in ω3 (ω2 from the squared
amplitude and a ω from phase space). In other words, if we had forgotten
one cut, the resulting spectrum behaviour would have been divergent as 1/ω
near zero instead of vanishing like ω3. In fact, this ω3 spectrum is exactly
the same as in the π0 → e+e−γ differential decay rate.
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Comparison with the Two-Photon Decay Mode

From the amplitude (14), we readily obtain the amplitude for K0
S → γγ

by removing the electron current, the photon propagator and by taking the
limit ω → 1:

M
(

K0
S → γγ

)

=
−2α

4π

M
(

K0
S → π+π−

)

m2
ε∗µ (k) ε∗ν

(

k′
) [

gµν
(

k · k′
)

− k′µkν
]

F

(

M2

4m2
, 0

)

with F
(

1
aπ
, 0
)

= 1
2a

2
π

{

f
(

1
aπ

)

− 1
aπ

}

i.e.

F
(

M2

4m2 , 0
)

=
4m4

M2

(

iπ

M2
ln

[

1+
√

1− 4m2

M2

1−
√

1− 4m2

M2

]

− 1

2

(

1

m2
− π2

M2
+

1

M2
ln2

[

1+
√

1− 4m2

M2

1−
√

1− 4m2

M2

]))

(24)

which corresponds to the result given in [14], [21], [23]. The relative decay
rate is :

Γ
(

K0
S → γγ

)

Γ
(

K0
S → π+π−

) =
α2

π2

1

a2
π

√
1 − aπ

∣

∣

∣

∣

F

(

1

aπ
, 0

)∣

∣

∣

∣

2

≃ 2.94 × 10−6

while the experimental value for this ratio is (3.5 ± 1.3) × 10−6 [24].
We can now compare the two electromagnetic modes :

Rγγ =
Γ
(

K0
S → e+e−γ

)

Γ
(

K0
S → γγ

) ≃ 0.016

in accordance with [21] and [19]. This ratio Rγγ is similar to [24]

Γ
(

π0 → e+e−γ
)

Γ (π0 → γγ)
≃ 0.012

The small difference is due to the phase-space factor. The similarity between
a constant coupling model like for π0 → e+e−γ and the present loop model
can be understood from the behaviour of the photon energy spectrum. In-
deed, the pure phase-space spectrum is very strongly peaked at high ω, and

therefore the decay rate is quite insensible to the detail of the F
(

1
aπ
, 1−ω

aπ

)

function. Specifically, if we replace F
(

1
aπ
, 1−ω

aπ

)

by its value for ω = 1 (24)

we find the ratio Rπ+π− ≃ 4.671 × 10−8, very close to (22).

6.4 Soft Photon Behaviour with a non-constant Form Factor

We now turn to the case of a non-constant amplitude M
(

K0
S → π+π−

)

≡
F
(

(q + k)2 , (q − t)2
)

. We analyze the process from the point of view of
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Low’s theorem. The constraint of gauge invariance will be seen to require
some new structure dependent contributions. We will prove that those new
contributions do not affect the interference between absorptive parts ob-
served in previous sections, responsible for the vanishing of the amplitude
in the soft photon limit.

Let us concentrate on the absorptive part of the amplitude for K0
S →

γe+e−. Using the optical theorem (see figure 2), we write

2 ImMµ
(

K0
S → γe+e−

)

= Vµ + Dµ (25)

with Vµ the vertical cut contribution and Dµ the diagonal one :

Vµ =

∫

dΦππ (2π)4 δ(4) (P − p1 − p2) M
(

K0
S → π+ (p1) π

− (p2)
)

×Mµ
(

π+ (p1)π
− (p2) → γγ∗ → γe+e−

)

Dµ =

∫

dΦππ (2π)4 δ(4) (P − p1 − p2 − k) Mµ
(

K0
S → π+ (p1) π

− (p2) γ (k)
)

×M
(

π+ (p1) π
− (p2) → γ∗ → e+e−

)

The ππ → γe+e− amplitude is gauge invariant, as can be easily verified,
and so is Vµ, independently of the form of F

(

p2
1, p

2
2

)

. Therefore Dµ has to
be gauge invariant too. The two bremsstrahlung contributions to Dµ are

Mµ
IB

(

K0
S → π+ (p1)π

− (p2) γ (k)
)

=

F
(

(p1 + k)2 , p2
2

) pµ
1

p1 · k
−F

(

p2
1, (p2 + k)2

) pµ
2

p2 · k
Trivially, gauge invariance is verified if the form factor is constant. Problems
arise if F (p1 + k, p2) 6= F (p1, p2 + k), since when contracted by kµ the two
terms fail to cancel. To maintain gauge invariance, one must supplement
the amplitude K0

S → π+π−γ with a structure dependent term, for example
Mµ

SD

(

K0
S → π+ (p1)π

− (p2) γ (k)
)

=

[

F
(

p2
1, (p2 + k)2

)

−F
(

(p1 + k)2 , p2
2

)] (p1 − p2)
µ

p1 · k − p2 · k
(26)

such that kµMµ
IB + kµMµ

SD = 0.
Let us now analyze the soft photon behaviour of this process. The form

factor is expanded around k = 0 as

F
(

(p1 + k)2 , p2
2

)

= F
(

p2
1, p

2
2

)

+ 2p1 · k ×F ′ + O
(

k2
)

F
(

p2
1, (p2 + k)2

)

= F
(

p2
1, p

2
2

)

+ 2p2 · k ×F ′ + O
(

k2
)

since we expect F ′ = ∂F
∂p2

1

(

p2
1, p

2
2

)

= ∂F
∂p2

2

(

p2
1, p

2
2

)

when evaluated on-shell, i.e.

at p2
1 = p2

2 = m2. The amplitude is now

Mµ
IB+SD = F

(

p2
1, p

2
2

)

[

pµ
1

p1 · k
− pµ

2

p2 · k

]

+ O (k) (27)
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i.e. the terms of order (k)0 disappeared. This result is valid in full generality,
it does not depend on the present structure dependent term (26) chosen for
illustration (see [13], [18]).

Now let us analyze the soft photon limit for the imaginary part (25). We
have obtained for the two cuts the structures

Vµ = F
(

p2
1, p

2
2

)

[

Aµ

k
+Bµ

]

Dµ = F
(

p2
1, p

2
2

)

[

Cµ

k

]

+ O (k)

Except for the O (k) terms in Dµ, this is exactly the soft photon expansion
one would get for a constant form factor. Hence we expect from the analyzes
of previous sections that the combination will vanish when k → 0. Note that
it is essential that no constant term (due to the momentum dependence
of F) appears in Mµ

IB+SD. This was guaranteed by the gauge invariance
of Mµ

IB+SD, which in turn necessitates the contribution of some structure
dependent amplitude.
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Figure 3 : The vertical cuts (dashed line) and vertical plus oblique cuts (continuous line)

contributions, for =0.03 and =0.0077 as a function of the photon energy xg g

Figure 1 : The direct and crossed diagrams for the decay p-Dmloop model e eg
+ -

Figure 2 : The vertical and oblique cuts contributing to the imaginary partamplitude
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