4,496 research outputs found
Electro-deposition of gold nano-structures on gold Quartz Crystal Microbalance (QCM) electrodes for enhanced mercury vapour sensitivity in the presence of interferent gasses
Gold electrode quartz crystal microbalances (QCMs) were used as transducing platform to detect and sense elemental mercury (Hg) in gas phase. The enhanced sensitivity, resulting form the electro-deposition of gold nano-structures on the surface is shown to increase the response magnitude (RM) of the sensors in the presence of ammonia and humidity interference. The concentration of NH3 and H2O was varied in the range 590 to 1770mg/m3 and 4.2 to 10.4mg/m3, respectively. A constant gas flow of 200sccm, balanced in nitrogen was used as the carrier gas. The RM for Hg was enhanced by creating nanostructures on the sensorpsilas gold electrodes via electro-deposition of gold in a lead acetate electrolyte. The results presented are a critical step in the development of a cheap regenerable and reliable sensor for measuring Hg in the presence of interferents gases commonly found in industrial applications
Strong extinction of a far-field laser beam by a single quantum dot
Through the utilization of index-matched GaAs immersion lens techniques we
demonstrate a record extinction (12%) of a far-field focused laser by a single
InAs/GaAs quantum dot. This contrast level enables us to report for the first
time resonant laser transmission spectroscopy on a single InAs/GaAs quantum dot
without the need for phase-sensitive lock-in detection
Phosphorus fractionation chemistry across the Great Plains
The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Includes bibliographical references.Phosphorus is one of the three important plant nutrients found in soils and has been used with great success as an index for soil and ecosystem development (Aguilar et al., 1988; Honeycutt et al., 1990; Vitousek et al., 2004). In general, phosphorus is has minimal solubility in soil because it participates in a number of secondary reactions after release from primary minerals as a result of weathering. Studies of the biogeochemical cycling of P in humid ecosystems has led to important insights about soil and ecosystem development. Arid and semi-arid ecosystems have largely been ignored under the assumption that chemical transformations are minimal. We conducted research on the biogeochemistry of P along a bioclimatic gradient in grassland ecosystems of the Great Plains. The overall goal of our research is to use a systematic approach to characterize and further quantify the P transformations in biogeographically diverse grassland ecosystems. Identifying P quantities originally contained in central Great Plains soil will allow us to assess 1) the relative importance of P in the biogeochemical behavior of grassland soils, 2) help us quantify the degree of chemical weathering in semi-arid-humid grassland ecosystems, and 3) elucidate cultural use and potential productivity of these ecosystems prior to use of commercial fertilizers. We sampled soils along a bioclimatic gradient that represent three grassland ecosystems, namely, the shortgrass steppe, the mixed-grass prairie, and the tallgrass prairie in eastern Kansas. The soils were collected from sites studied within the Long-Term Ecological Research Program in areas that had not been used for agricultural practices other than grazing. We conducted a sequential extraction procedure to identify the following P fractions: soluble, Al-bound, Fe-bound, occluded, and Ca-bound. Our results suggest that soluble P is generally below detection limits at these sites, illustrating the high turnover rate of available P in these undisturbed systems. The Al-bound fraction was variable across all sites. The Fe-bound P contributed to the total P fraction only from the mixed grass and tall grass prairies. The occluded P fraction was greatest in the shortgrass steppe, decreased dramatically as mean annual and primary production increase from west to east.NSF Grant No. 0217631
Energy Dissipation and Trapping of Particles Moving on a Rough Surface
We report an experimental, numerical and theoretical study of the motion of a
ball on a rough inclined surface. The control parameters are , the diameter
of the ball, , the inclination angle of the rough surface and ,
the initial kinetic energy. When the angle of inclination is larger than some
critical value, , the ball moves at a constant average
velocity which is independent of the initial conditions. For an angle , the balls are trapped after moving a certain distance. The
dependence of the travelled distances on , and . is
analysed. The existence of two kinds of mechanisms of dissipation is thus
brought to light. We find that for high initial velocities the friction force
is constant. As the velocity decreases below a certain threshold the friction
becomes viscous.Comment: 8 pages RevTeX, 12 Postscript figure
Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method
Two dimensional molybdenum disulfide (MoS2) has recently become of interest to semiconductor and optic industries. However, the current methods for its synthesis require harsh environments that are not compatible with standard fabrication processes. We report on a facile synthesis method of layered MoS2 using a thermal evaporation technique, which requires modest conditions. In this process, a mixture of MoS2 and molybdenum dioxide (MoO2) is produced by evaporating sulfur powder and molybdenum trioxide (MoO3) nano-particles simultaneously. Further annealing in a sulfur-rich environment transforms majority of the excess MoO2 into layered MoS2. The deposited MoS2 is then mechanically exfoliated into minimum resolvable atomically thin layers, which are characterized using micro-Raman spectroscopy and atomic force microscopy. Furthermore Raman spectroscopy is employed to determine the effect of electrochemical lithium ion exposure on atomically thin layers of MoS2
Facile synthesis of layered hexagonal MoS2
In this work synthesis of layered molybdenum sulphide (MoS2) through a temperature-controlled thermal evaporation approach is reported. Simultaneous co-evaporation of molybdenum trioxide (MoO3) and sulphur in an argon environment is employed. The as-deposited thin films are characterized by diffraction and microscopy
The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research
Alpha oscillations (7–13 Hz) are the dominant rhythm in both the resting and active brain.
Accordingly, translational research has provided evidence for the involvement of aberrant alpha activ-
ity in the onset of symptomatological features underlying syndromes such as autism, schizophrenia,
major depression, and Attention Deficit and Hyperactivity Disorder (ADHD). However, findings on
the matter are difficult to reconcile due to the variety of paradigms, analyses, and clinical phenotypes
at play, not to mention recent technical and methodological advances in this domain. Herein, we seek
to address this issue by reviewing the literature gathered on this topic over the last ten years. For each
neuropsychiatric disorder, a dedicated section will be provided, containing a concise account of the
current models proposing characteristic alterations of alpha rhythms as a core mechanism to trigger
the associated symptomatology, as well as a summary of the most relevant studies and scientific con-
tributions issued throughout the last decade. We conclude with some advice and recommendations
that might improve future inquiries within this field
On attributes of a Rotating Neutron star with a Hyperon core
We study the effect of rotation on global properties of neutron star with a
hyperon core in an effective chiral model with varying nucleon effective mass
within a mean field approach. The resulting gross properties of the rotating
compact star sequences are then compared and analyzed with other theoretical
predictions and observations from neutron stars. The maximum mass of the
compact star predicted by the model lies in the range at
Kepler frequency , which is consistant with recent observation of
high mass stars thereby reflecting the sensitivity of the underlying nucleon
effective mass in the dense matter EoS. We also discuss the implications of the
experimental constraints from the flow data from heavy-ion collisions on the
global properties of the rotating neutron stars.Comment: 11 Pages, 10 Figures and 2 Table
Permeability of self-affine rough fractures
The permeability of two-dimensional fractures with self-affine fractal
roughness is studied via analytic arguments and numerical simulations. The
limit where the roughness amplitude is small compared with average fracture
aperture is analyzed by a perturbation method, while in the opposite case of
narrow aperture, we use heuristic arguments based on lubrication theory.
Numerical simulations, using the lattice Boltzmann method, are used to examine
the complete range of aperture sizes, and confirm the analytic arguments.Comment: 11 pages, 9 figure
Transport Coefficients for Granular Media from Molecular Dynamics Simulations
Under many conditions, macroscopic grains flow like a fluid; kinetic theory
pred icts continuum equations of motion for this granular fluid. In order to
test the theory, we perform event driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat
bath. Even for strong dissipation, high densities, and small numbers of
particles, we find that continuum theory describes the system well. With a bath
that heats the gas homogeneously, strong velocity correlations produce a
slightly smaller energy loss due to inelastic collisions than that predicted by
kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients
are induced. Determination of the resulting fluxes allows calculation of the
thermal conductivity and shear viscosity, which are compared to the predictions
of granular kinetic theory, and which can be used in continuum modeling of
granular flows. The shear viscosity is close to the prediction of kinetic
theory, while the thermal conductivity can be overestimated by a factor of 2;
in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199
- …