8,865 research outputs found

    High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12

    Get PDF
    Star formation in molecular clouds is intimately linked to their internal mass distribution. We present an unprecedentedly detailed analysis of the column density structure of a high-mass, filamentary molecular cloud, namely IRDC G11.11-0.12 (G11). We use two novel column density mapping techniques: high-resolution (FWHM=2", or ~0.035 pc) dust extinction mapping in near- and mid-infrared, and dust emission mapping with the Herschel satellite. These two completely independent techniques yield a strikingly good agreement, highlighting their complementarity and robustness. We first analyze the dense gas mass fraction and linear mass density of G11. We show that G11 has a top heavy mass distribution and has a linear mass density (M_l ~ 600 Msun pc^{-1}) that greatly exceeds the critical value of a self-gravitating, non-turbulent cylinder. These properties make G11 analogous to the Orion A cloud, despite its low star-forming activity. This suggests that the amount of dense gas in molecular clouds is more closely connected to environmental parameters or global processes than to the star-forming efficiency of the cloud. We then examine hierarchical fragmentation in G11 over a wide range of size-scales and densities. We show that at scales 0.5 pc > l > 8 pc, the fragmentation of G11 is in agreement with that of a self-gravitating cylinder. At scales smaller than l < 0.5 pc, the results agree better with spherical Jeans' fragmentation. One possible explanation for the change in fragmentation characteristics is the size-scale-dependent collapse time-scale that results from the finite size of real molecular clouds: at scales l < 0.5 pc, fragmentation becomes sufficiently rapid to be unaffected by global instabilities.Comment: 8 pages, 8 figures, accepted to A&

    Gaps, Rings, and Non-Axisymmetric Structures in Protoplanetary Disks - From Simulations to ALMA Observations

    Get PDF
    Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we want to study axisymmetric and non-axisymmetric structures, evocated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. We performed non-ideal global 3D MHD stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters are taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of circumstellar disks. The 2D temperature and density profiles are calculated consistently from a given surface density profile and Monte-Carlo radiative transfer. The 2D Ohmic resistivity profile is calculated using a dust chemistry model. The magnetic field is a vertical net flux field. The resulting dust reemission provides the basis for the simulation of observations with ALMA. The fiducial model develops a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure is strong enough to stop the radial drift of particles. In addition, we observe the generation of vortices by the Rossby wave instability (RWI) at the jumps location close to 60 AU. The vortices are steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict the feasibility to observe such large scale structures appearing in magnetized disks without having a planet.Comment: Language update, added comments, added citations, in press. (A&A

    Universal Features of Terahertz Absorption in Disordered Materials

    Full text link
    Using an analytical theory, experimental terahertz time-domain spectroscopy data and numerical evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between far-infrared photons and atomic vibrations in disordered materials has the universal functional form, C(omega) = A + B*omega^2, where the material-specific constants A and B are related to the distributions of fluctuating charges obeying global and local charge neutrality, respectively.Comment: 5 pages, 3 fig

    Financial markets in the Southern African development community: the harmonisation and approximation of commercial laws

    Get PDF
    The free flow of capital has been identified as a critical factor in the process of reducing poverty in the SADC region, along with the lowering of trade barriers. While the trade protocols have been adopted and much has been made of the harmonisation of stock exchange listing requirements and central banking regulation, it is an effort at harmonising corporate law that is noticeably absent. This article focuses on the harmonisation of business law including the supporting financial markets and the process of corporate law reform in South Africa, Botswana and Zimbabwe

    Kinematic and Thermal Structure at the onset of high-mass star formation

    Get PDF
    We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH3_3(1,1) and (2,2) lines within seven very young high-mass star-forming regions with the VLA and the Effelsberg 100m telescope. This allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5"", corresponding to ∌\sim0.05 pc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. We report an upper limit for the linewidth of ∌\sim1.3 km s−1^{-1}, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2 km s−1^{-1} and gradients of 5 to 10 km s−1^{-1} pc−1^{-1}. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centers that is larger than 30 km s−1^{-1} pc−1^{-1}. This steep velocity gradient is consistent with recent models of cloud collapse. Furthermore, we report a spatial correlation of ammonia and cold dust, but we also find decreasing ammonia emission close to infrared emission sources.Comment: 20 pages, 10 figure

    Very Low-Mass Objects in the Coronet Cluster: The Realm of the Transition Disks

    Full text link
    We present optical and IR spectra of a set of low-mass stars and brown dwarfs in the Coronet cluster (aged ~1Myr), obtained with the multifiber spectrograph FLAMES/VLT and IRS/Spitzer. The optical spectra reveal spectral types between M1 and M7.5, confirm the youth of the objects (via Li 6708 A absorption), and show the presence of accretion (via Halpha) and shocks (via forbidden line emission). The IRS spectra, together with IR photometry from the IRAC/MIPS instruments on Spitzer and 2MASS, confirm the presence of IR excesses characteristic of disks around ~70% of the objects. Half of the disks do not exhibit any silicate emission, or present flat features characteristic of large grains. The rest of the disks show silicate emission typical of amorphous and crystalline silicate grains a few microns in size. About 50% of the objects with disks do not show near-IR excess emission, having "transitional" disks, according to their classical definition. This is a very high fraction for such a young cluster. The large number of "transitional" disks suggests lifetimes comparable to the lifetimes of typical optically thick disks. Therefore, these disks may not be in a short-lived phase, intermediate between Class II and Class III objects. The median spectral energy distribution of the disks in the Coronet cluster is also closer to a flat disk than observed for the disks around solar-type stars in regions with similar age. The differences in the disk morphology and evolution in the Coronet cluster could be related to fact that these objects have very late spectral types compared to the solar-type stars in other cluster studies. Finally, the optical spectroscopy reveals that one of the X-ray sources is produced by a Herbig Haro object in the cloud.Comment: 51 pages, 13 figures, 10 table

    Comparação dos métodos de papel de filtro e meio de neon na detecção de Sclerotinia sclerotiorum (LIB.) de Bary em sementes de soja.

    Get PDF
    O mofo branco, cuja ocorrĂȘncia em soja era restrita Ă  regiĂŁo Sul, atĂ© os anos 80, recentemente ganhou destaque nas regiĂ”es central e nordeste do Brasil. O fungo pode ser transmitido via semente de duas maneiras: esclerĂłdios misturados Ă  semente (mal beneficiada ou semente pirata ou caseira) ou na forma de micĂ©lio interno, dormente. Nesse estudo, foram utilizadas sementes de quatro experimentos conduzidos no Estado de GoiĂĄs, em ĂĄreas infestadas com o mofo branco. O trabalho teve por objetivo comparar os mĂ©todos do papel de filtro e de Neon (modificados). Quarenta e duas amostras de sementes foram analisadas. No mĂ©todo de papel de filtro, foram empregadas quatro repetiçÔes de 200 sementes. ApĂłs o perĂ­odo de incubação de 21 dias a 18 °C ± 2 ÂșC, sob luz fluorescente foi efetuada a leitura. No mĂ©todo de Neon, foram utilizadas apenas as sementes oriundas de um experimento, onde foi constatada a presença de S. sclerotiorum no teste do papel de filtro. De cada uma das 12 amostras/tratamentos, foram utilizadas quatro repetiçÔes de 100 sementes incubadas no escuro a 19Âș C ± 1 ÂșC por sete dias. Com relação Ă  ocorrĂȘncia dos demais fungos, no mĂ©todo do papel de filtro, observou-se que Phomopsis sp. foi o principal patĂłgeno. Sclerotinia sclerotiorum, foi observada em apenas uma semente pelo mĂ©todo do papel de filtro, indicando uma taxa de 0,003% de transmissĂŁo. No teste de Neon, o fungo foi detectado em duas sementes o que resultou numa taxa de transmissĂŁo de 0,042%. Esses resultados permitem concluir que o mĂ©todo do Neon, apesar de ser mais rĂĄpido, nĂŁo apresenta vantagem em relação Ă  sua sensibilidade na detecção de S. sclerotiorum, alĂ©m de ser mais oneroso e trabalhoso

    Hierarchical fragmentation and collapse signatures in a high-mass starless region

    Full text link
    Aims: Understanding the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3mm PdBI data, and now the new 1.07mm continuum observations, the sub-structures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence and/or magnetic fields. While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak 70mum emission toward one core with a comparably low luminosity of ~16L_sun, re-enforcing the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0km/s regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio <=0.25. We discuss that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.Comment: 8 pages, 4 figures, A&A in pres
    • 

    corecore