11,412 research outputs found
Violation of Leggett inequalities in orbital angular momentum subspaces
We report an experimental test of Leggett's non-local hidden variable theory in an orbital angular momentum (OAM) state space of light. We show that the correlations we observe are in conflict with Leggett's model, thus excluding a particular class of non-local hidden variable theories for the first time in a non-polarization state space. It is known that the violation of the Leggett inequality becomes stronger as more detection settings are used. The required measurements become feasible in an OAM subspace, and we demonstrate this by testing the inequality using three and four settings. We observe excellent agreement with quantum predictions and a violation of five and six standard deviations, respectively, compared to Leggett's non-local hidden variable theory
Two-dimensional magnetism in the pnictide superconductor parent material SrFeAsF probed by muon-spin relaxation
We report muon-spin relaxation measurements on SrFeAsF, which is the parent
compound of a newly discovered iron-arsenic-fluoride based series of
superconducting materials. We find that this material has very similar magnetic
properties to LaFeAsO, such as separated magnetic and structural transitions
(TN = 120 K, Ts = 175 K), contrasting with SrFe2As2 where they are coincident.
The muon oscillation frequencies fall away very sharply at TN, which suggests
that the magnetic exchange between the layers is weaker than in comparable
oxypnictide compounds. This is consistent with our specific heat measurements,
which find that the entropy change S = 0.05 J/mol/K largely occurs at the
structural transition and there is no anomaly at TN.Comment: 4 pages, 3 figure
The role of cattle manure in enhancing on-farm productivity, macro- and micro-nutrient uptake, and profitability of maize in the Guinea savanna
An on-farm trial was conducted in the northern Guinea savanna of Nigeria, over a period of five years, with the objectives of quantifying the effects on maize of applying cattle manure in combination with synthetic fertilizer with regard to soil characteristics, yield, plant nutrition and profitability. Maize grain yield was significantly increased by the annual application of cattle manure, compared to maize receiving an equal amount of N through synthetic fertilizer, but only from the third year of the experiment. The application of manure resulted in higher soil Kjel N, Bray-I P and exchangeable K values, and an increased N utilization efficiency by maize, suggesting that yield-limiting factors other than N deficiencies were of lesser importance than in the treatment receiving sole inorganic fertilizer. Nutrients other than N applied via the manure, particularly P, K and/or B, may have contributed to the higher grain yields in treatments receiving manure. A partial budgeting analysis revealed that, over a 5-year period, investments in the application of manure, in combination with synthetic fertilizer, resulted in higher margins than the application of fertilizer alone. However, analyses of marginal rates of return of changes from low urea N to high urea N or additional manure applications suggested that it was more profitable to invest in additional urea than in organic manure in the first two years of the experiment. The results suggested that manure applications, even when applied at relatively high rates, did not serve as a quick fix to on-farm soil fertility problems, but over a longer period, manure applied in combination with synthetic fertilizers did provide a significant and profitable contribution to enhanced cereal production
Zero-mode contribution to the light-front Hamiltonian of Yukawa type models
Light-front Hamiltonian for Yukawa type models is determined without the
framework of canonical light-front formalism. Special attention is given to the
contribution of zero modes.Comment: 14 pages, Latex, revised version with minor changes, Submitted to
J.Phys.
Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems
Long-range repulsive interaction between TTF molecules on a metal surface induced by charge transfer
The low-coverage adsorption of a molecular electron donor,
tetrathiafulvalene, on Au(111) is characterized by the spontaneous formation of
superlattice of monomers, whose spacing exceeds the equilibrium distance of
non-covalent interactions and depends on coverage. The origin of this peculiar
growth mode is due to a long-range repulsive interaction between molecules. The
analysis of molecular-pair distributions obtained by scanning tunneling
microscopy measurements permits us to determine that the nature of TTF
intermolecular interactions on Au (111) is electrostatic. A repulsion between
molecules is caused by the accumulation of charge due to electron donation into
the metal surface, as pictured through density functional theory calculations
A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise
We prove a functional non-central limit theorem for jump-diffusions with
periodic coefficients driven by strictly stable Levy-processes with stability
index bigger than one. The limit process turns out to be a strictly stable Levy
process with an averaged jump-measure. Unlike in the situation where the
diffusion is driven by Brownian motion, there is no drift related enhancement
of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit
Evidence for magnetic clusters in NiV close to the quantum critical concentration
The d-metal alloy NiV undergoes a quantum phase transition from
a ferromagnetic ground state to a paramagnetic ground state as the vanadium
concentration is increased. We present magnetization, ac-susceptibility and
muon-spin relaxation data at several vanadium concentrations near the critical
concentration at which the onset of ferromagnetic order is
suppressed to zero temperature. Below , the muon data reveal a broad
magnetic field distribution indicative of long-range ordered ferromagnetic
state with spatial disorder. We show evidence of magnetic clusters in the
ferromagnetic phase and close to the phase boundary in this disordered
itinerant system as an important generic ingredient of a disordered quantum
phase transition. In contrast, the temperature dependence of the magnetic
susceptibility above is best described in terms of a magnetic quantum
Griffiths phase with a power-law distribution of fluctuation rates of dynamic
magnetic clusters. At the lowest temperatures, the onset of a short-range
ordered cluster-glass phase is recognized by an increase in the muon
depolarization in transverse fields and maxima in ac-susceptibility.Comment: 6 pages, 5 figures, submitted to Proceedings of SCES 201
- …