74,359 research outputs found

    Why the xE distribution triggered by a leading particle does not measure the fragmentation function but does measure the ratio of the transverse momenta of the away-side jet to the trigger-side jet

    Get PDF
    Hard-scattering of point-like constituents (or partons) in p-p collisions was discovered at the CERN-ISR in 1972 by measurements utilizing inclusive single or pairs of hadrons with large transverse momentum (pTp_T). It was generally assumed, following Feynman, Field and Fox, as shown by data from the CERN-ISR experiments, that the pTap_{T_a} distribution of away side hadrons from a single particle trigger [with pTtp_{T_t}], corrected for of fragmentation would be the same as that from a jet-trigger and follow the same fragmentation function as observed in e+e−e^+ e^- or DIS. PHENIX attempted to measure the fragmentation function from the away side xE∼pTa/pTtx_E\sim p_{T_a}/p_{T_t} distribution of charged particles triggered by a π0\pi^0 in p-p collisions at RHIC and showed by explicit calculation that the xEx_E distribution is actually quite insensitive to the fragmentation function. Illustrations of the original arguments and ISR results will be presented. Then the lack of sensitivity to the fragmentation function will be explained, and an analytic formula for the xEx_E distribution given, in terms of incomplete Gamma functions, for the case where the fragmentation function is exponential. The away-side distribution in this formulation has the nice property that it both exhibits xEx_E scaling and is directly sensitive to the ratio of the away jet p^Ta\hat{p}_{T_a} to that of the trigger jet, p^Tt\hat{p}_{T_t}, and thus can be used, for example, to measure the relative energy loss of the two jets from a hard-scattering which escape from the medium in A+A collisions. Comparisons of the analytical formula to RHIC measurements will be presented, including data from STAR and PHENIX, leading to some interesting conclusions.Comment: 6 pages, 5 figures, Proceedings of Poster Session, 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2006), November 14-20, 2006, Shanghai, P. R. Chin

    Identified hadron production at high transverse momenta in p+p collisions at sqrt(NN) = 200 GeV in STAR

    Get PDF
    We report the transverse momentum (pT) distributions for identified charged pions, protons and anti-protons using events triggered by high deposit energy in the Barrel Electro-Magnetic Calorimeter (BEMC) from p + p collisions at psNN = 200 GeV. The spectra are measured around mid-rapidity (|y|<0.5) over the range of 3<pT<15 GeV/c with particle identification (PID) by the relativistic ionization energy loss (rdE/dx) in the Time Projection Chamber (TPC) in the Solenoidal Tracker at RHIC (STAR). The charged pion, proton and anti-proton spectra at high pT are compared with published results from minimum bias triggered events and the Next-Leading-Order perturbative quantum chromodynamic (NLO pQCD) calculations (DSS, KKP and AKK 2008). In addition, we present the particle ratios of pi-/pi+, pbar/p, p/pi+ and pbar/pi- in p + p collisions.Comment: 4 pages, 4 figures, Hot Quark 2008 proceedin

    Polarization spectroscopy of an excited state transition.

    Get PDF
    We demonstrate polarization spectroscopy of an excited state transition in room-temperature cesium vapor. An anisotropy induced by a circularly polarized pump beam on the D2 transition is observed using a weak probe on the 6P3/2→7S1/2 transition. At high pump power, a subfeature due to Autler-Townes splitting is observed that theoretical modeling shows is enhanced by Doppler averaging. Polarization spectroscopy provides a simple modulation–free signal suitable for laser frequency stabilization to excited state transitions

    Overview of event-by-event analysis of high energy nuclear collisions

    Full text link
    The event-by-event analysis of high energy nuclear collisions aims at revealing the richness of the underlying event structures and provide unique measures of dynamical fluctuations associated with QGP phase transition. The major challenge in these studies is to separate the dynamical fluctuations from the many other sources which contribute to the measured values. We present the fluctuations in terms of event multiplicity, mean transverse momentum, elliptic flow, source sizes, particle ratios and net charge distributions. In addition, we discuss the effect of long range correlations, disoriented chiral condensates and presence of jets. A brief review of various probes used for fluctuation studies and available experimental results are presented.Comment: Invited talk at the "XIth International Workshop on Correlation and Fluctuation in Multiparticle Production", Nov 21-24, 2006, Hangzhou, China (19 pages

    Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations

    Get PDF
    Although OGLE-TR-56b was the second transiting exoplanet discovered, only one light curve, observed in 2006, has been published besides the discovery data. We present twenty-one light curves of nineteen different transits observed between July 2003 and July 2009 with the Magellan Telescopes and Gemini South. The combined analysis of the new light curves confirms a slightly inflated planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J. However, the values found for the transit duration, semimajor axis, and inclination values differ significantly from the previous result, likely due to systematic errors. The new semimajor axis and inclination, a = 0.01942 +/- 0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer. The transit midtimes have errors from 23 s to several minutes, and no evidence is seen for transit midtime or duration variations. Similarly, no change is seen in the orbital period, implying a nominal stellar tidal decay factor of Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap

    Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    Full text link
    We present measurements of net charge fluctuations in Au+AuAu + Au collisions at sNN=\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV, Cu+CuCu + Cu collisions at sNN=\sqrt{s_{NN}} = 62.4, 200 GeV, and p+pp + p collisions at s=\sqrt{s} = 200 GeV using the net charge dynamical fluctuations measure ν+−,dyn\nu_{+-,dyn}. The dynamical fluctuations are non-zero at all energies and exhibit a rather modest dependence on beam energy. We find that at a given energy and collision system, net charge dynamical fluctuations violate 1/Nch1/N_{ch} scaling, but display approximate 1/Npart1/N_{part} scaling. We observe strong dependence of dynamical fluctuations on the azimuthal angular range and pseudorapidity widths.Comment: 4 pages, 4 figures, presented at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur, India, February 4-10, 200
    • …
    corecore