153 research outputs found

    Eigenfunctions decay for magnetic pseudodifferential operators

    Full text link
    We prove rapid decay (even exponential decay under some stronger assumptions) of the eigenfunctions associated to discrete eigenvalues, for a class of self-adjoint operators in L2(Rd)L^2(\mathbb{R}^d) defined by ``magnetic'' pseudodifferential operators (studied in \cite{IMP1}). This class contains the relativistic Schr\"{o}dinger operator with magnetic field

    Magnetic Fourier Integral Operators

    Full text link
    In some previous papers we have defined and studied a 'magnetic' pseudodifferential calculus as a gauge covariant generalization of the Weyl calculus when a magnetic field is present. In this paper we extend the standard Fourier Integral Operators Theory to the case with a magnetic field, proving composition theorems, continuity theorems in 'magnetic' Sobolev spaces and Egorov type theorems. The main application is the representation of the evolution group generated by a 1-st order 'magnetic' pseudodifferential operator (in particular the relativistic Schr\"{o}dinger operator with magnetic field) as such a 'magnetic' Fourier Integral Operator. As a consequence of this representation we obtain some estimations for the distribution kernel of this evolution group and a result on the propagation of singularities

    Spin tunneling through an indirect barrier

    Full text link
    Spin-dependent tunneling through an indirect bandgap barrier like the GaAs/AlAs/GaAs heterostructure along [001] direction is studied by the tight-binding method. The tunneling is characterized by the proportionality of the Dresselhaus Hamiltonians at Γ\Gamma and XX points in the barrier and by Fano resonances. The present results suggest that large spin polarization can be obtained for energy windows that exceed significantly the spin splitting. We also formulate two conditions that are necessary for the existence of energy windows with large polarization.Comment: 19 pages, 7 figure

    Global exponential stability of classical solutions to the hydrodynamic model for semiconductors

    Full text link
    In this paper, the global well-posedness and stability of classical solutions to the multidimensional hydrodynamic model for semiconductors on the framework of Besov space are considered. We weaken the regularity requirement of the initial data, and improve some known results in Sobolev space. The local existence of classical solutions to the Cauchy problem is obtained by the regularized means and compactness argument. Using the high- and low- frequency decomposition method, we prove the global exponential stability of classical solutions (close to equilibrium). Furthermore, it is also shown that the vorticity decays to zero exponentially in the 2D and 3D space. The main analytic tools are the Littlewood-Paley decomposition and Bony's para-product formula.Comment: 18 page

    Optical, structural and morphological investigations for different metallic oxides

    Get PDF
    Date du colloque : 07/2013International audienc
    • …
    corecore