In some previous papers we have defined and studied a 'magnetic'
pseudodifferential calculus as a gauge covariant generalization of the Weyl
calculus when a magnetic field is present. In this paper we extend the standard
Fourier Integral Operators Theory to the case with a magnetic field, proving
composition theorems, continuity theorems in 'magnetic' Sobolev spaces and
Egorov type theorems. The main application is the representation of the
evolution group generated by a 1-st order 'magnetic' pseudodifferential
operator (in particular the relativistic Schr\"{o}dinger operator with magnetic
field) as such a 'magnetic' Fourier Integral Operator. As a consequence of this
representation we obtain some estimations for the distribution kernel of this
evolution group and a result on the propagation of singularities