701 research outputs found
Sub-SQL Sensitivity via Optical Rigidity in Advanced LIGO Interferometer with Optical Losses
The ``optical springs'' regime of the signal-recycled configuration of laser
interferometric gravitational-wave detectors is analyzed taking in account
optical losses in the interferometer arm cavities. This regime allows to obtain
sensitivity better than the Standard Quantum Limits both for a free test mass
and for a conventional harmonic oscillator. The optical losses restrict the
gain in sensitivity and achievable signal-to-noise ratio. Nevertheless, for
parameters values planned for the Advanced LIGO gravitational-wave detector,
this restriction is insignificant.Comment: 15 pages, 9 figure
Dual-Resonator Speed Meter for a Free Test Mass
A description and analysis are given of a ``speed meter'' for monitoring a
classical force that acts on a test mass. This speed meter is based on two
microwave resonators (``dual resonators''), one of which couples evanescently
to the position of the test mass. The sloshing of the resulting signal between
the resonators, and a wise choice of where to place the resonators' output
waveguide, produce a signal in the waveguide that (for sufficiently low
frequencies) is proportional to the test-mass velocity (speed) rather than its
position. This permits the speed meter to achieve force-measurement
sensitivities better than the standard quantum limit (SQL), both when operating
in a narrow-band mode and a wide-band mode. A scrutiny of experimental issues
shows that it is feasible, with current technology, to construct a
demonstration speed meter that beats the wide-band SQL by a factor 2. A concept
is sketched for an adaptation of this speed meter to optical frequencies; this
adaptation forms the basis for a possible LIGO-III interferometer that could
beat the gravitational-wave standard quantum limit h_SQL, but perhaps only by a
factor 1/xi = h_SQL/h ~ 3 (constrained by losses in the optics) and at the
price of a very high circulating optical power --- larger by 1/xi^2 than that
required to reach the SQL.Comment: RevTex: 13 pages with 4 embedded figures (two .eps format and two
drawn in TeX); Submitted to Physical Review
Bypassing Cowling's theorem in axisymmetric fluid dynamos
We present a numerical study of the magnetic field generated by an
axisymmetrically forced flow in a spherical domain. At small enough Reynolds
number, Re, the flow is axisymmetric and generates an equatorial dipole above a
critical magnetic Reynolds number Rmc . The magnetic field thus breaks
axisymmetry, in agreement with Cowling's theorem. This structure of the
magnetic field is however replaced by a dominant axial dipole when Re is larger
and allows non axisymmetric fluctuations in the flow. We show here that even in
the absence of such fluctuations, an axial dipole can also be generated, at low
Re, through a secondary bifurcation, when Rm is increased above the dynamo
threshold. The system therefore always find a way to bypass the constraint
imposed by Cowling's theorem. We understand the dynamical behaviors that result
from the interaction of equatorial and axial dipolar modes using simple model
equations for their amplitudes derived from symmetry arguments.Comment: 4 pages, 6 figure
Influence of gravitational field on quantum-nondemolition measurement of atomic momentum in the dispersive Jaynes-Cummings model
We present a theoretical scheme based on su(2) algebra to investigate the
influence of homogeneous gravitational field on the quantum nondemolition
measurement of atomic momentum in dispersive Jaynes-Cummings model. In the
dispersive Jaynes-Cummings model, when detuning is large and the atomic motion
is in a propagating light wave, we consider a two-level atom with quantized
cavity-field in the presence of a homogeneous gravitational field. We derive an
effective Hamiltonian describing the dispersive atom-field interaction in the
presence of gravitational field. We can see gravitational influence both on the
momentum filter and momentum distribution. Moreover, gravitational field
decreases both tooth spacing of momentum and the width of teeth of momentum.Comment: 21 pages, 8 figure
To the practical design of the optical lever intracavity topology of gravitational-wave detectors
The QND intracavity topologies of gravitational-wave detectors proposed
several years ago allow, in principle, to obtain sensitivity significantly
better than the Standard Quantum Limit using relatively small anount of optical
pumping power. In this article we consider an improved more ``practical''
version of the optical lever intracavity scheme. It differs from the original
version by the symmetry which allows to suppress influence of the input light
amplitude fluctuation. In addition, it provides the means to inject optical
pumping inside the scheme without increase of optical losses.
We consider also sensitivity limitations imposed by the local meter which is
the key element of the intracavity topologies. Two variants of the local meter
are analyzed, which are based on the spectral variation measurement and on the
Discrete Sampling Variation Measurement, correspondingly. The former one, while
can not be considered as a candidate for a practical implementation, allows, in
principle, to obtain the best sensitivity and thus can be considered as an
ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can
be considered as a realistic scheme but its sensitivity, unfortunately, is by
far not so good just due to a couple of peculiar numeric factors specific for
this scheme.
From our point of view search of new methods of mechanical QND measurements
probably based on improved DSVM scheme or which combine the local meter with
the pondermotive squeezing technique, is necessary.Comment: 27 pages, 6 figure
Forced and self-excited oscillations of an optomechanical cavity
We experimentally study forced and self oscillations of an optomechanical
cavity which is formed between a fiber Bragg grating that serves as a static
mirror and between a freely suspended metallic mechanical resonator that serves
as a moving mirror. In the domain of small amplitude mechanical oscillations,
we find that the optomechanical coupling is manifested as changes in the
effective resonance frequency, damping rate and cubic nonlinearity of the
mechanical resonator. Moreover, self oscillations of the micromechanical mirror
are observed above a certain optical power threshold. A comparison between the
experimental results and a theoretical model that we have recently presented
yields a good agreement. The comparison also indicates that the dominant
optomechanical coupling mechanism is the heating of the metallic mirror due to
optical absorption.Comment: 11 pages, 6 figure
High-sensitivity force measurement using entangled probes
We show the possibility to improve the measurement sensitivity of a weak
force by using two meters in an entangled state. This latter can be achieved by
exploiting radiation pressure effects.Comment: ReVTeX file, 11 pages, 2 eps figure
Conversion of conventional gravitational-wave interferometers into QND interferometers by modifying their input and/or output optics
The LIGO-II gravitational-wave interferometers (ca. 2006--2008) are designed
to have sensitivities at about the standard quantum limit (SQL) near 100 Hz.
This paper describes and analyzes possible designs for subsequent, LIGO-III
interferometers that can beat the SQL. These designs are identical to a
conventional broad-band interferometer (without signal recycling), except for
new input and/or output optics. Three designs are analyzed: (i) a
"squeezed-input interferometer" (conceived by Unruh based on earlier work of
Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is
injected into the interferometer's dark port; (ii) a "variational-output"
interferometer (conceived in a different form by Vyatchanin, Matsko and
Zubova), in which homodyne detection with FD homodyne phase is performed on the
output light; and (iii) a "squeezed-variational interferometer" with squeezed
input and FD-homodyne output. It is shown that the FD squeezed-input light can
be produced by sending ordinary squeezed light through two successive
Fabry-Perot filter cavities before injection into the interferometer, and
FD-homodyne detection can be achieved by sending the output light through two
filter cavities before ordinary homodyne detection. With anticipated technology
and with laser powers comparable to that planned for LIGO-II, these
interferometers can beat the amplitude SQL by factors in the range from 3 to 5,
corresponding to event rate increases between ~30 and ~100 over the rate for a
SQL-limited interferometer.Comment: Submitted to Physical Review D; RevTeX manuscript with 16 figures;
prints to 33 pages in Physical Review double column format. Minor revisions
have been made in response to referee repor
Quantum Zeno Effect Explains Magnetic-Sensitive Radical-Ion-Pair Reactions
Chemical reactions involving radical-ion pairs are ubiquitous in biology,
since not only are they at the basis of the photosynthetic reaction chain, but
are also assumed to underlie the biochemical magnetic compass used by avian
species for navigation. Recent experiments with magnetic-sensitive radical-ion
pair reactions provided strong evidence for the radical-ion-pair
magnetoreception mechanism, verifying the expected magnetic sensitivities and
chemical product yield changes. It is here shown that the theoretical
description of radical-ion-pair reactions used since the 70's cannot explain
the observed data, because it is based on phenomenological equations masking
quantum coherence effects. The fundamental density matrix equation derived here
from basic quantum measurement theory considerations naturally incorporates the
quantum Zeno effect and readily explains recent experimental observations on
low- and high-magnetic-field radical-ion-pair reactions.Comment: 10 pages, 5 figure
- …