9 research outputs found
XIAP-mediated Caspase Inhibition in Hodgkin's Lymphoma–derived B Cells
The malignant Hodgkin and Reed-Sternberg cells of Hodgkin's lymphoma (HL) and HL-derived B cell lines were previously shown to be resistant to different apoptotic stimuli. We show here that cytochrome c fails to stimulate caspases-9 and -3 activation in cytosolic extracts of HL-derived B cells, which is due to high level expression of X-linked inhibitor of apoptosis (XIAP). Coimmunoprecipitation studies revealed that XIAP, apoptosis protease-activating factor–1, and caspase-3 are complexed in HL-derived B cell lysates. Even after stimulation with exogenous cytochrome c and dATP, XIAP impairs the proteolytic processing and activation of caspase-3. In cytosolic extracts, inhibition of XIAP by the second mitochondria-derived activator of caspases (Smac)/DIABLO, or immunodepletion of XIAP restores cytochrome c–triggered processing and activation of caspase-3. Smac or a Smac-derived agonistic peptide also sensitized intact HL-derived B cells for the apoptotic action of staurosporine. Finally, Hodgkin and Reed-Sternberg cells of primary tumor HL tissues also constitutively and abundantly express XIAP. The results of this paper suggest that high level XIAP expression is a hallmark of HL, which may play a crucial role in resistance to apoptosis
Identification of ubiquitination sites on the X-linked inhibitor of apoptosis protein.
The execution phase of apoptosis is under the control of members of the inhibitor of apoptosis (IAP) family of zinc finger proteins. Several of these proteins contain a C-terminal RING (really interesting new gene) domain that has been postulated to regulate ubiquitination of themselves or their target proteins, thereby modulating thresholds for apoptosis. We demonstrate that the auto-ubiquitination sites of the X-linked IAP (XIAP) are Lys(322) and Lys(328), located in the third baculovirus IAP repeat domain of the protein. Modification of these sites to arginine dramatically reduces ubiquitination of XIAP, but has no measurable effect on the ability of ectopically expressed IAP to rescue cells from two independent apoptotic inducers. Our data firmly locate the auto-ubiquitination sites, and raise doubts regarding the importance of this event as a mechanism for regulating the levels of XIAP
XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs
The X-linked inhibitor of apoptosis protein (XIAP) uses its second baculovirus IAP repeat domain (BIR2) to inhibit the apoptotic executioner caspase-3 and -7. Structural studies have demonstrated that it is not the BIR2 domain itself but a segment N-terminal to it that directly targets the activity of these caspases. These studies failed to demonstrate a role of the BIR2 domain in inhibition. We used site-directed mutagenesis of BIR2 and its linker to determine the mechanism of executioner caspase inhibition by XIAP. We show that the BIR2 domain contributes substantially to inhibition of executioner caspases. A surface groove on BIR2, which also binds to Smac/DIABLO, interacts with a neoepitope generated at the N-terminus of the caspase small subunit following activation. Therefore, BIR2 uses a two-site interaction mechanism to achieve high specificity and potency for inhibition. Moreover, for caspase-7, the precise location of the activating cleavage is critical for subsequent inhibition. Since apical caspases utilize this cleavage site differently, we predict that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP
The BIR domain of IAP-like protein 2 is conformationally unstable: implications for caspase inhibition
Several IAP (inhibitor of apoptosis) proteins regulate cell fate decisions, and the X-linked IAP (XIAP) does so in part by inhibiting caspases, proteases that execute the apoptotic pathway. A tissue-specific homologue of XIAP, known as ILP2 (IAP-like protein 2), has previously been implicated in the control of apoptosis in the testis by direct inhibition of caspase 9. In examining this protein we found that the putative caspase 9 interaction domain is a surprisingly weak inhibitor and is also conformationally unstable. Comparison with the equivalent domain in XIAP demonstrated that the instability is due to the lack of a linker segment N-terminal to the inhibitory BIR (baculovirus IAP repeat) domain. Fusion of a 9-residue linker from XIAP to the N-terminus of ILP2 restored tight caspase 9 inhibition, dramatically increased conformational stability and allowed crystallization of the ILP2 BIR domain in a form strikingly similar to the XIAP third BIR domain. We conclude that ILP2 is an unstable protein, and cannot inhibit caspase 9 in a physiological way on its own. We speculate that ILP2 requires assistance from unidentified cellular factors to be an effective inhibitor of apoptosis in vivo
Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)–mediated inhibition of caspase 9
During apoptosis, the initiator caspase 9 is activated at the apoptosome after which it activates the executioner caspases 3 and 7 by proteolysis. During this process, caspase 9 is cleaved by caspase 3 at Asp330, and it is often inferred that this proteolytic event represents a feedback amplification loop to accelerate apoptosis. However, there is substantial evidence that proteolysis per se does not activate caspase 9, so an alternative mechanism for amplification must be considered. Cleavage at Asp330 removes a short peptide motif that allows caspase 9 to interact with IAPs (inhibitors of apoptotic proteases), and this event may control the amplification process. We show that, under physiologically relevant conditions, caspase 3, but not caspase 7, can cleave caspase 9, and this does not result in the activation of caspase 9. An IAP antagonist disrupts the inhibitory interaction between XIAP (X-linked IAP) and caspase 9, thereby enhancing activity. We demonstrate that the N-terminal peptide of caspase 9 exposed upon cleavage at Asp330 cannot bind XIAP, whereas the peptide generated by autolytic cleavage of caspase 9 at Asp315 binds XIAP with substantial affinity. Consistent with this, we found that XIAP antagonists were only capable of promoting the activity of caspase 9 when it was cleaved at Asp315, suggesting that only this form is regulated by XIAP. Our results demonstrate that cleavage by caspase 3 does not activate caspase 9, but enhances apoptosis by alleviating XIAP inhibition of the apical caspase