5,274 research outputs found

    Real-time path planning optimisation algorithm for obstacle avoidance

    Get PDF
    This paper presents a new real-time path planning algorithm suitable for implementation on small mobile robots to aid navigation in unknown environments. The Random Obstacle Avoidance (R.O.A) algorithm was developed for small robots and it can be used as the basis for mapping the environment. The algorithm has been tested through a specially developed simulation environment using MATLAB. The main characteristics of the algorithm are simplicity, ease of implementation, speed, and efficiency

    Biomarkers in emergency medicine

    Get PDF
    Researchers navigate the ocean of biomarkers searching for proper targets and optimal utilization of them. Emergency medicine builds up the front line to maximize the utility of clinically validated biomarkers and is the cutting edge field to test the applicability of promising biomarkers emerging from thorough translational researches. The role of biomarkers in clinical decision making would be of greater significance for identification, risk stratification, monitoring, and prognostication of the patients in the critical- and acute-care settings. No doubt basic research to explore novel biomarkers in relation to the pathogenesis is as important as its clinical counterpart. This special issue includes five selected research papers that cover a variety of biomarker- and disease-related topics

    Neutral scalar Higgs bosons in the USSM at the LHC

    Full text link
    We study the possibility of discovering neutral scalar Higgs bosons in the U(1)U(1)'-extended supersymmetric standard model (USSM) at the CERN Large Hadron Collider (LHC), by examining their productions via the exotic quark loop in the gluon fusion process at leading order. It is possible in some parameter region that the neutral scalar Higgs bosons may have stronger couplings with the exotic quarks than with top quark. In this case, the exotic quarks may contribute more significantly than top quark in productions of the neutral scalar Higgs bosons in the gluon fusion process. We find that there is indeed some parameter region in the USSM that supports our speculations.Comment: 18 pages; changed content; JPhys

    Nonfrustrated magnetoelectric with incommensurate magnetic order in magnetic field

    Full text link
    We discuss a model nonfrustrated magnetoelectric in which strong enough magnetoelectric coupling produces incommensurate magnetic order leading to ferroelectricity. Properties of the magnetoelectric in magnetic field directed perpendicular to wave vector describing the spin helix are considered in detail. Analysis of classical energy shows that in contrast to naive expectation the onset of ferroelectricity takes place at a field Hc1H_{c1} that is lower than the saturation field Hc2H_{c2}. One has Hc1=Hc2H_{c1}=H_{c2} at strong enough magnetoelectric coupling. We show that at H=0 the ferroelectricity appears at T=TFE<TNT=T_{FE}<T_N. Qualitative discussion of phase diagram in HTH-T plane is presented within mean field approach.Comment: 12 pages, 3 figures, accepted in JET

    Circulating Biologically Active Adrenomedullin Predicts Organ Failure and Mortality in Sepsis

    Get PDF
    BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Biologically active adrenomedullin (bio-ADM) is an emerging biomarker for sepsis. We explored whether bio-ADM concentration could predict severity, organ failure, and 30-day mortality in septic patients. METHODS: In 215 septic patients (109 patients with sepsis; 106 patients with septic shock), bio-ADM concentration was measured at diagnosis of sepsis, using sphingotest bio-ADM (Sphingotec GmbH, Hennigsdorf, Germany) and analyzed in terms of sepsis severity, vasopressor use, and 30-day mortality. The number of organ failures, sequential (sepsis-related) organ failure assessment (SOFA) score, and 30-day mortality were compared according to bio-ADM quartiles. RESULTS: Bio-ADM concentration was significantly higher in patients with septic shock, vasopressor use, and non-survivors than in patients with solitary sepsis, no vasopressor use, and survivors, respectively (all P&lt;0.0001). Bio-ADM quartiles were associated with the number of organ failures (P&lt;0.0001), as well as SOFA cardiovascular, renal, coagulation, and liver subscores (all P&lt;0.05). The 30-day mortality rate showed a stepwise increase in each bio-ADM quartile (all P&lt;0.0001). Bio-ADM concentration and SOFA score equally predicted the 30-day mortality (area under the curve: 0.827 vs 0.830). CONCLUSIONS: Bio-ADM could serve as a useful and objective biomarker to predict severity, organ failure, and 30-day mortality in septic patients

    Collective control strategy for a cluster of stall-regulated offshore wind turbines

    Get PDF
    The power converter is one of the most vulnerable components of a wind turbine. When the converter of an offshore wind turbine malfunctions, it could be difficult to resolve due to poor accessibility. A turbine generally has a dedicated controller that regulates its operation. In this paper, a collective control approach that allows a cluster of turbines to share a single converter, hence a single controller, that could be placed in a more accessible location. The resulting simplified turbines are constant-speed stall-regulated with standard asynchronous generators. Each cluster is connected by a mini-AC network, whose frequency can be varied through a centralised AC-DC-AC power converter. Potential benefits include improved reliability of each turbine due to simplification of the turbines and enhanced profit owing to improved accessibility. A cluster of 5 turbines is assessed compared to the situation with each turbine having its own converter. A collective control strategy that acts in response to the poorest control is proposed, as opposed to acting in response to the average control. The strategy is applied to a cluster model, and simulation results demonstrate that the control strategy could be more cost-effective than each turbine having its own converter, especially with optimal rotor design

    2δ2\delta-Kicked Quantum Rotors: Localization and `Critical' Statistics

    Get PDF
    The quantum dynamics of atoms subjected to pairs of closely-spaced δ\delta-kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the singly-δ\delta-kicked system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase-space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L.75L \sim \hbar^{-.75} and obtain a regime of near-linear spectral variances which approximate the `critical statistics' relation Σ2(L)χL1/2(1ν)L\Sigma_2(L) \simeq \chi L \approx {1/2}(1-\nu) L, where ν0.75\nu \approx 0.75 is related to the fractal classical phase-space structure. The origin of the ν0.75\nu \approx 0.75 exponent is analyzed.Comment: 4 pages, 3 fig

    Sejong Open Cluster Survey (SOS) - IV. The Young Open Clusters NGC 1624 and NGC 1931

    Full text link
    Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and H alpha photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by = 0.92 +/- 0.05 and 0.74 +/- 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (Rv,cl = 5.2 +/- 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 +/- 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 +/- 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 Myr and 1.5 - 2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF (Gamma_NGC 1624 = -2.0 +/- 0.2 and Gamma_NGC 1931 = -2.0 +/- 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters seems not to be far different from that in the solar neighborhood.Comment: 79 pages, 21 pages, 7 tables, Accepted for publication in the Astronomical Journa
    corecore