
Strathprints Institutional Repository

Hur, S. and Petropoulakis, L. (2006) Real-Time Path Planning Optimisation Algorithm for Obstacle
Avoidance. In: International Control Conference 2006, 2006-08-30 - 2006-09-01, Glasgow, UK.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9022555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
 
 
 
 
 
 

 
 
 
 

 
Real-Time Path-Planning Optimisation Algorithm for Obstacle Avoidance 

 
 

S. -H. Hur and L. Petropoulakis 
 
 

Department of Electronic and Electrical Engineering, 
University of Strathclyde, 

50 George Street, Glasgow G1 1QE, U.K 
                 e:shur@eee.strath.ac.uk 

e:akis@eee.strath.ac.uk 
 
 

This paper presents a new real-time path planning algorithm suitable for implementation 
on small mobile robots to aid navigation in unknown environments. The Random 
Obstacle Avoidance (R.O.A) algorithm was developed for small robots and it can be used 
as the basis for mapping the environment.  The algorithm has been tested through a 
specially developed simulation environment using MATLAB. The main characteristics of 
the algorithm are simplicity, ease of implementation, speed, and efficiency.  
Copyright © 2006 USTRATH 
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1. INTRODUCTION 
 
Obstacle Avoidance algorithms generally enable 
autonomous vehicles to navigate without colliding 
with obstacles and are generally classified as those 
employed in known environments and those used in 
unknown environments. Many algorithms exist for 
known environments. These include Visibility Graph 
Representation, Configuration Space Method, 
Voronoi Diagrams, Dijkstra’s Shortest Path 
Algorithm and Minkowski Sum. These algorithms are 
generally used alongside path smoothing methods 
such as the Cubic Splines or the Post Processing 
method. This is required as obstacle avoidance 
algorithms do not normally account for the physical 
limitations of the robot or the constraints of the paths 
to be followed  
 
Clearly, it is far more complex to develop algorithms 
for use in unknown or semi-structured environments. 
This paper suggests one such algorithm which may be 
used in real-time for small robots to: 
a) Avoid randomly appearing unknown obstacles in 

the path of a robot and  
b) Return the robot to an assumed optimal path 

towards a goal. For known or semi-structured 
environments this path is pre-evaluated using 
procedures not outlined in this paper. 

 
The common uses of path-planning algorithms are in 
robot navigation (Ringdahl, 2003) and flight 
formation (Ousingsawat, 2004) amongst others.  

In this case it was intended that the algorithm be kept 
as simple as possible for ease of implementation and 
due to hardware limitations associated with small 
mobiles. Thus, substantial problem simplification was 
assumed, including working on just first integrals and 
relying heavily on sensory inputs. Hence, despite 
apparent connections to other path-planning systems, 
no direct comparisons can be drawn here given their 
complexity. 
 
In this paper, the basic navigational concepts are 
described in section 2. Section 3 introduces the ROA 
algorithm which uses Cardinal Splines for providing 
smooth motion. Section 4 exemplifies the operation 
of the algorithm in the presence of unknown obstacles. 
The navigation is simulated in MATLAB, through a 
specially developed Graphic User Interface (GUI). 
Conclusions are in section 5, followed by references.    
 
 

2. BASIC  NAVIGATIONAL CONCEPTS 
 
As the name indicates, a ROA algorithm allows the 
robot to avoid random or unknown obstacles and 
clearly use of sensors is essential. The sensors 
employed in this study, the way walls are positioned 
in the simulation, and the structure of the robot are 
also outlined in this section. In order to simulate the 
robot with its sensing system (fig.1), some basic 
definitions and mathematics (Ringdahl, 2003) must 
first be introduced.  
 

     



First we define the orientation, the steering angle, and 
the heading of the robot.  
 
The orientation φ  of the robot is defined as the angle 
that the central longitudinal axis of the robot makes 
with the x-axis (fig.2). 
 
At any moment in time t, the steering angleα  is by 
the difference in the robot orientation at time t and t-1. 
  
The heading θ  is defined as the angle that the line, 
connecting the central front point of the robot and the 
target, makes with the x-axis as shown in fig. 2. 
The robot shown in fig. 1 is therefore considered to 
be at ‘0’ or ‘initial’ orientation.  

 
Fig. 1. Structure of simulated robot 

 
Fig. 2. Heading and orientation 
 

 
Fig. 3. Turning Radius 
 
L is the length between the front and centre markers 
of the robot (fig.3) and given as: 

222 )()( cfcf yyxxL −+−=  (1) 
where (xc, yc) and (xf, yf) are centre and front 
coordinates respectively. 
 
∂  is defined in (fig. 3) as: 

22
απ

−=∂    (2),  

where α  is the steering angle and the radius of the 
turning circle, r, is (fig. 3): 

∂
=

cos
Lr  (3) 

 
With the radius of the turning circle, r, known, the 
centre coordinates of the turning circle, (cirX, cirY) 
(fig. 4) are derived as: 

( , ) ( cos( ), sin(
2 2

cirX cirY r ro o )π πφ φ= + +   (5) 

where 0φ   and φ  are the initial and new robot 
orientations respectively. 

 
Fig. 4. Determination of the position after time t 

ile turning wh

 
Fig. 5. Angle Moved, α   
 
Assuming a constant speed the distance, d, traversed 
by the robot is vtd = , where v is the velocity and t is 
the time interval. Now, if c is the circumference of 
circle then we can easily derive:    
                   

π
α
2

=
c
d   (6) 

By using the aforementioned equations, we can now 
calculate the position of the robot after a time, t, 
either when the steering angle,α , is zero, i.e. going 
straight, or the steering angle is non-zero, i.e. turning 
as follows (Ringdahl, 2003): 
 
If α = 0, i.e. zero steering  

• φ       = φ o 
• 

0 c o s ( )x x d φ= +    

• 
0 s in ( )y y d φ= + , 

where x , y and x0, yo are new and initial x and y 
coordinates of the robot respectively.     
 
If 0≠α , i.e. non-zero steering angle (fig. 4) 

• αφφ += 0  

• )
2

cos( πφ +−= rcirXx   

• )
2

sin( πφ +−= rcirYy   

where r is the radius of the turning circle and,  and 0φ
φ are the initial and new orientations of the robot 
respectively.   
 

     



The rotational matrix,  
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is used during simulation to evaluate and then plot the 
robot position and orientation. 
In equation (7), xx and yy are the respective x and y 
coordinates of the robot at 0 orientation and X and are 
the x and y coordinates at orientationφ . 
 
Fig. 6 illustrates the robot approaching an obstacle 
and four stars (a, b, c, d) representing the assumed 
sensing actions that identify obstacles and provide a 
safety margin.  

 
Fig. 6. Robot with sensing system approaching an 

stacle ob
 
The following equations are used to calculate the 
heading of the robot with obstacles, walls or goal. For 
a positive heading angle, 

)(cos 1

l
x±

= −θ    (8),  

where x is the x-coordinate of the obstacle, wall or 
goal minus the x-coordinate of the centre of robot and 
l is the length between the centre of robot and the 
obstacle, wall or goal. For a negative heading angle, 

)(cos360 1

l
x±

−= −θ  (9) 

In real life, the robot takes appropriate action when it 
detects any obstacles within its safety margin, i.e. 
when the distance between robot and the obstacle is 
less than the distance between the robot and any of 
the action sensing points, (fig. 6). For simulation 
purposes, obstacles are assumed to be encircled 
rectangular objects (the circle being of defined radius), 
and the robot has to continuously calculate the 
distances between the sensing points and the centre 
point of an obstacle. Hence if a distance between any 
of the sensing points and the centre of an obstacle 
becomes shorter than the radius of the circle 
surrounding the obstacle, the robot knows that a part 
of the obstacle is likely to be within the safety margin 
and takes action to avoid the obstacle. Walls 
enclosing the simulated area are approximated as 
straight line obstacles (or arcs of very large circles). 
 
For simulation purposes it is also assumed that use of 
additional sensors results in better accuracy. However, 
too many simulated sensors slow down the simulation 
as the distances between the robot and the obstacles 
are evaluated constantly.  

3. RANDOM OBSTACLE AVOIDANCE (ROA) 
ALGORITHM 

 
The ROA algorithm uses the basic concept of 
Cardinal Spline as defined in (IBM Corporation) and 
(Twigg, 2003). The following steps explain how the 
algorithm works: 
 
Step 1 Assuming there are no random or unknown 
obstacles present, we find the optimal path from the 
source to the goal, i.e. straight line from the source to 
the goal if the environment is fully unknown. Note 
that in the case of partially known environments, this 
will not be a straight line (fig. 16).  
 
Step 2 While following the predefined path obtained 
from step 1, if there are any random obstacles present, 
turn right or left to clear the obstacle from the sensors. 
The robot determines whether to turn right or left 
based on the following process (with respect to the 
robot shown in fig. 6):  
 
For simple binary sensors a, b, c and d  
 
If (a is on OR b is on) AND (c is off AND d is off) 
- Then: Turn right (negative steering angle) 
If (a is on AND b is off) AND (c is on AND d is off) 
- Then: Turn right 
If (a is on AND b is on) AND (c is on AND d is off) 
- Then: Turn right 
ELSE  
-  Turn left (positive steering angle) 
 
Using this approach it can be seen that in fig. 7, that 
the robot encounters an obstacle with sensors a or b 
on (fig. 7(a)), and turns right only to collide with 
another obstacle (fig. 7(b)). A simple modification of 
the algorithm, so that “while turning to clear an 
obstacle, if another obstacle is detected, there must be 
a change in the sign of the steering angle”, solves the 
problem as shown in fig. 7(c). Robot moves from fig. 
7(a) to 7(c) and finally to 7(d) in the modified case.  

 
             (a)                                      (b) 

 
                    (c)                                       (d)  
Fig. 7. Choosing correct turn  

     



Step 3 When the robot has cleared an obstacle it 
generates a new path using the Cardinal Spline (fig. 
8) to get the robot back on track towards the goal. The 
spline is created using the following control points: 
[Centre coordinates, Centre coordinates, Sensing 
point, Look Ahead Point, Goal, Goal].  
 

 
Fig. 8. Cardinal Spline  
 
This sequence of control points is due to the Cardinal 
Spline implementation (Twigg, 2003). For example, 
if A, B, C and D are the control points (fig. 8) then 
the segment starts at B and ends at C. The points A 
and D are present only to define the shape of the line 
segment BC . Therefore, the segment AB  is drawn 
with the control points A, A, B and C, BC  is drawn 
with the control points A, B, C and D, and so on. 
Hence, to obtain the spline shown in fig. 8, the set of 
control points must be A, A, B, C, D, E, E. 
 
Our algorithm uses a Look Ahead Point (LAP), 
described in step 4, as one of the control points for the 
calculation of the new Cardinal Spline. Selecting a 
sensing point as a control point, is described in step 5.  
 
Fig. 9, illustrates the robot turning right according to 
step 2 as it encounters a random obstacle with the left 
side of the sensors and a new spline being generated 
as described above.  

 
Fig. 9.  Random Obstacle Avoidance 
 
Step 4 The originally calculated optimal (i.e. before 
collision avoidance) path (fig. 9) is composed of 
many line segments. To find a suitable LAP we first 
have to find the point on a line segment on the 
optimal path which is closest to the robot’s current 
position. This will enable the robot to return onto the 
optimal path, once the obstacle is cleared. The 
following possibilities exist: 
 
Possibility 1: In fig. 10, P indicates the coordinates of 
the current position of the robot and the line segment, 
P0 and P1 is the segment in consideration. The 
following can be derived: 

0bw P P ve= − = −    (10) 

vePPv +=−= 01    (11) 

vewvC −==1 (12) 

Thus, if C1 is smaller than (or equal to) zero the robot 
is on the left hand-side of the line segment P0 and P1. 

      
 
Fig. 10. Robot on the left hand side of the segment 
 
Possibility 2: The following are derived from fig. 11  

vePPw b= − = +  (13) 0

vePPv +=−= 01  (14) 

vevvC +==2  (15) 

vewvC +==1  (16) 
 
Now if   w v  then  C≥ 1 ≥ C2  and  the robot will be 
on the right hand-side of the line segment P0 and P1 
 

 
 
Fig. 11. Robot on the right hand side of the segment 
 
Possibility 3: If neither 1 nor 2 above are valid, then 
it must be the case that the following are valid: 

vePPw b +=−= 0 (17) 

vePPv +=−= 01 (18) 

v
w

vv
wv

C
Cb ===

2

1  (19) 

bvPPb += 0  (20) 

 
 
Fig. 12. Robot above the segment  
 
As it has already been mentioned, the original path is 
composed of many short line segments and we can 
find the point on the line segment that is closest to the 
current position of the robot by checking the distance 
between the coordinates of the robot and all the line 
segments on the original path using the 
aforementioned approach.  
 
Step 5 Once the closest point on the original path is 
found, we then calculate the LAP (Ringdahl, 2003). 
This is a value defining a point on the path away from 
the closest point and in the direction of the goal. 
The importance of using a LAP is illustrated in fig 13 
where the robot is meant to follow the curved path 

     



round the known obstacles (solid lines). When an 
unknown obstacle (dotted lines) appear in the path a 
new path is calculated. Without a LAP the path may 
be too “sharp” for the robot to follow or one leading 
the robot into problems, fig. 13(a). With a LAP the 
path is smoother and easy to follow, fig. 13(b).  

 
(a) Without LAP 

  
(b)  With LAP 
Fig. 13. Importance of LAP 
 
If the distance between the robot and the goal is 
shorter than that between the robot and the LAP then 
the LAP is ignored. If it is not ignored the robot will 
deviate from its path unnecessarily and may take a 
long time to recover.  
 
Step 6 In the example shown (fig. 9), the sensing 
point C (fig. 6) is used as one of the control points for 
evaluating the new path.  If the steering angle is 
negative (moving right), then the sensing point used 
as a control point for the R.O.A algorithm will be the 
sensing point C and if the current steering angle is 
positive then the sensing point B is used instead. The 
reason for choosing sensing points B or C rather than 
the robot middle point, is that the latter is more likely 
to result in a new path likely to lead the robot into 
collision with the obstacle.  By choosing the sensing 
point C, the new path is further away from the 
obstacle. Similarly, if points A or D were chosen then 
the likelihood of a wider path (therefore likely to 
collide with other objects) increases. 
 
Figures 14 and 15 show the importance of the LAP. 
In fig. 14(a) and 14(b), although the robot eventually 
reaches the goal, it orbits around the obstacle before it 
does so. This is due to the wrong values of LAP 
which can cause the robot to keep going round the 
object unnecessarily before it finally finds its way 
towards the goal. In contrast, the robot reaches the 

goal optimally in fig. 15(a) and 15(b) resulting from a 
correct value of LAP. 

 
(a) 

 
(b) 
Fig. 14. Using incorrect LAP values  

 
(a) 

 
(b) 
Fig. 15. Using correct LAP values 
  
Step 7 By using the centre coordinates of the robot, 
the sensing point, LAP and the goal as control points 
we can now create a new path using the Cardinal 
Spline. If more obstacles are detected on the defined 
path, repeat the previous steps until the robot reaches 
the goal. 
 
 

4. IMPLEMENTATION OF THE ALGORITHM 
 
In fig. 16, dotted and solid lines indicate unknown 
and known obstacles respectively. The optimal path 
shown in fig. 16(a) is generated by consideration the 
presence of known obstacles only using a modified 
version of Dijkstra’s algorithm not discussed here.  
 
The aim in fig. 16(b) and 16(c) is to use the ROA to 
avoid the two unknown (dotted) obstacles which 
appear on the optimal path that has been evaluated. 
All paths that have been generated and considered 
“on the fly” are shown here in this copy of the screen 
capture, fig. 16(c). The path ultimately followed by 
the robot is the one passing closest to the top right 
side of the top known obstacle.  It can be seen that the 
robot has successfully managed to generate an 
optimal path on the run, follow it and reach the goal. 
Normally in known environments, the robot will 

     



follow the predefined optimal path towards the goal. 
When unknown obstacles are met however, the 
procedure described in this paper takes control to 
modify the path and move the robot safely towards 
the goal whilst staying as close to the optimal path as 
it is physically possible.  

 
(a) 

 
(b) 

 
(c) 
Fig. 16. Simulation Results  
 
 
5. CONCLUSIONS 
 
In all simulation examples we have tried the R.O.A 
algorithm results in a fast and fairly smooth motion 
and within the competence of its sensing system will 
always find an optimal path and track it as much as it 
is possible. In producing these results, we have 
assumed that a) the robot cannot reverse and b) there 
is no disturbances and noise in the sensing system.  
 
In generating the algorithm we have made use of a 
Look Ahead Point (LAP). It should be noted that the 
latter is dependent on the size of the obstacle 
encountered which, of course, for random or 
unknown obstacles will generally be unknown. Our 
solution relies on an educated guess based on 
information about the position of the robot, the 
coordinates of the point on the line segment 

considered closest to the robot and the known goal or 
optimal path position.  Choosing the wrong LAP 
value consistently results in the situation shown in fig. 
14. Note that in this case the algorithm will not fail 
but it will lose efficiency.  One possible solution is 
not to use a LAP until some mapping of the 
environment has been made. Although a jerkier 
motion may be generated, the algorithm still works. 
Choosing the correct values of safety margins and 
steering angle is also essential. Large safety margins 
provide the robot with more safety but it is possible 
that a path may not be found when one exists. It is 
best if moderate values are used which can then be 
increased or decreased based on acquired knowledge. 
In our case the safety margins used were directly 
related to the speed of the robot.  
 
Increasing the magnitude of the steering angle also 
provides the robot with a sharper, thus quicker, turn 
when avoiding obstacles. However, the value has to 
be within reasonable bounds which depend on the 
physical limitations of the robot.  
 
Improving the sensing system requires more 
computing power and therefore the capacity and 
memory of the robot has to be taken into account, as 
the algorithm is meant to work in real-time.  
 
Finally, we have not presented any results regarding 
the convergence of this simple algorithm since the 
approach is heavily dependent on sensory inputs and 
the Look Ahead Point. The selection of the latter is 
empirical and thus a theoretical evaluation of 
convergence becomes almost meaningless in this case. 
However, an in-depth analysis is in preparation for a 
journal publication. 
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