
Strathprints Institutional Repository

Hur, S. and Petropoulakis, L. (2006) Real-Time Path Planning Optimisation Algorithm for Obstacle
Avoidance. In: International Control Conference 2006, 2006-08-30 - 2006-09-01, Glasgow, UK.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9022555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Real-Time Path-Planning Optimisation Algorithm for Obstacle Avoidance

S. -H. Hur and L. Petropoulakis

Department of Electronic and Electrical Engineering,
University of Strathclyde,

50 George Street, Glasgow G1 1QE, U.K
 e:shur@eee.strath.ac.uk

e:akis@eee.strath.ac.uk

This paper presents a new real-time path planning algorithm suitable for implementation
on small mobile robots to aid navigation in unknown environments. The Random
Obstacle Avoidance (R.O.A) algorithm was developed for small robots and it can be used
as the basis for mapping the environment. The algorithm has been tested through a
specially developed simulation environment using MATLAB. The main characteristics of
the algorithm are simplicity, ease of implementation, speed, and efficiency.
Copyright © 2006 USTRATH

Keywords: path planning, obstacle avoidance, mobile robot control.

1. INTRODUCTION

Obstacle Avoidance algorithms generally enable
autonomous vehicles to navigate without colliding
with obstacles and are generally classified as those
employed in known environments and those used in
unknown environments. Many algorithms exist for
known environments. These include Visibility Graph
Representation, Configuration Space Method,
Voronoi Diagrams, Dijkstra’s Shortest Path
Algorithm and Minkowski Sum. These algorithms are
generally used alongside path smoothing methods
such as the Cubic Splines or the Post Processing
method. This is required as obstacle avoidance
algorithms do not normally account for the physical
limitations of the robot or the constraints of the paths
to be followed

Clearly, it is far more complex to develop algorithms
for use in unknown or semi-structured environments.
This paper suggests one such algorithm which may be
used in real-time for small robots to:
a) Avoid randomly appearing unknown obstacles in

the path of a robot and
b) Return the robot to an assumed optimal path

towards a goal. For known or semi-structured
environments this path is pre-evaluated using
procedures not outlined in this paper.

The common uses of path-planning algorithms are in
robot navigation (Ringdahl, 2003) and flight
formation (Ousingsawat, 2004) amongst others.

In this case it was intended that the algorithm be kept
as simple as possible for ease of implementation and
due to hardware limitations associated with small
mobiles. Thus, substantial problem simplification was
assumed, including working on just first integrals and
relying heavily on sensory inputs. Hence, despite
apparent connections to other path-planning systems,
no direct comparisons can be drawn here given their
complexity.

In this paper, the basic navigational concepts are
described in section 2. Section 3 introduces the ROA
algorithm which uses Cardinal Splines for providing
smooth motion. Section 4 exemplifies the operation
of the algorithm in the presence of unknown obstacles.
The navigation is simulated in MATLAB, through a
specially developed Graphic User Interface (GUI).
Conclusions are in section 5, followed by references.

2. BASIC NAVIGATIONAL CONCEPTS

As the name indicates, a ROA algorithm allows the
robot to avoid random or unknown obstacles and
clearly use of sensors is essential. The sensors
employed in this study, the way walls are positioned
in the simulation, and the structure of the robot are
also outlined in this section. In order to simulate the
robot with its sensing system (fig.1), some basic
definitions and mathematics (Ringdahl, 2003) must
first be introduced.

First we define the orientation, the steering angle, and
the heading of the robot.

The orientation φ of the robot is defined as the angle
that the central longitudinal axis of the robot makes
with the x-axis (fig.2).

At any moment in time t, the steering angleα is by
the difference in the robot orientation at time t and t-1.

The heading θ is defined as the angle that the line,
connecting the central front point of the robot and the
target, makes with the x-axis as shown in fig. 2.
The robot shown in fig. 1 is therefore considered to
be at ‘0’ or ‘initial’ orientation.

Fig. 1. Structure of simulated robot

Fig. 2. Heading and orientation

Fig. 3. Turning Radius

L is the length between the front and centre markers
of the robot (fig.3) and given as:

222)()(cfcf yyxxL −+−= (1)
where (xc, yc) and (xf, yf) are centre and front
coordinates respectively.

∂ is defined in (fig. 3) as:

22
απ

−=∂ (2),

where α is the steering angle and the radius of the
turning circle, r, is (fig. 3):

∂
=

cos
Lr (3)

With the radius of the turning circle, r, known, the
centre coordinates of the turning circle, (cirX, cirY)
(fig. 4) are derived as:

(,) (cos(), sin(
2 2

cirX cirY r ro o)π πφ φ= + + (5)

where 0φ and φ are the initial and new robot
orientations respectively.

Fig. 4. Determination of the position after time t

ile turning wh

Fig. 5. Angle Moved, α

Assuming a constant speed the distance, d, traversed
by the robot is vtd = , where v is the velocity and t is
the time interval. Now, if c is the circumference of
circle then we can easily derive:

π
α
2

=
c
d (6)

By using the aforementioned equations, we can now
calculate the position of the robot after a time, t,
either when the steering angle,α , is zero, i.e. going
straight, or the steering angle is non-zero, i.e. turning
as follows (Ringdahl, 2003):

If α = 0, i.e. zero steering

• φ = φ o
•

0 c o s ()x x d φ= +

•
0 s in ()y y d φ= + ,

where x , y and x0, yo are new and initial x and y
coordinates of the robot respectively.

If 0≠α , i.e. non-zero steering angle (fig. 4)

• αφφ += 0

•)
2

cos(πφ +−= rcirXx

•)
2

sin(πφ +−= rcirYy

where r is the radius of the turning circle and, and 0φ
φ are the initial and new orientations of the robot
respectively.

The rotational matrix,

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
yy
xx

Y
X

φφ
φφ

cossin
sincos (7)

is used during simulation to evaluate and then plot the
robot position and orientation.
In equation (7), xx and yy are the respective x and y
coordinates of the robot at 0 orientation and X and are
the x and y coordinates at orientationφ .

Fig. 6 illustrates the robot approaching an obstacle
and four stars (a, b, c, d) representing the assumed
sensing actions that identify obstacles and provide a
safety margin.

Fig. 6. Robot with sensing system approaching an

stacle ob

The following equations are used to calculate the
heading of the robot with obstacles, walls or goal. For
a positive heading angle,

)(cos 1

l
x±

= −θ (8),

where x is the x-coordinate of the obstacle, wall or
goal minus the x-coordinate of the centre of robot and
l is the length between the centre of robot and the
obstacle, wall or goal. For a negative heading angle,

)(cos360 1

l
x±

−= −θ (9)

In real life, the robot takes appropriate action when it
detects any obstacles within its safety margin, i.e.
when the distance between robot and the obstacle is
less than the distance between the robot and any of
the action sensing points, (fig. 6). For simulation
purposes, obstacles are assumed to be encircled
rectangular objects (the circle being of defined radius),
and the robot has to continuously calculate the
distances between the sensing points and the centre
point of an obstacle. Hence if a distance between any
of the sensing points and the centre of an obstacle
becomes shorter than the radius of the circle
surrounding the obstacle, the robot knows that a part
of the obstacle is likely to be within the safety margin
and takes action to avoid the obstacle. Walls
enclosing the simulated area are approximated as
straight line obstacles (or arcs of very large circles).

For simulation purposes it is also assumed that use of
additional sensors results in better accuracy. However,
too many simulated sensors slow down the simulation
as the distances between the robot and the obstacles
are evaluated constantly.

3. RANDOM OBSTACLE AVOIDANCE (ROA)
ALGORITHM

The ROA algorithm uses the basic concept of
Cardinal Spline as defined in (IBM Corporation) and
(Twigg, 2003). The following steps explain how the
algorithm works:

Step 1 Assuming there are no random or unknown
obstacles present, we find the optimal path from the
source to the goal, i.e. straight line from the source to
the goal if the environment is fully unknown. Note
that in the case of partially known environments, this
will not be a straight line (fig. 16).

Step 2 While following the predefined path obtained
from step 1, if there are any random obstacles present,
turn right or left to clear the obstacle from the sensors.
The robot determines whether to turn right or left
based on the following process (with respect to the
robot shown in fig. 6):

For simple binary sensors a, b, c and d

If (a is on OR b is on) AND (c is off AND d is off)
- Then: Turn right (negative steering angle)
If (a is on AND b is off) AND (c is on AND d is off)
- Then: Turn right
If (a is on AND b is on) AND (c is on AND d is off)
- Then: Turn right
ELSE
- Turn left (positive steering angle)

Using this approach it can be seen that in fig. 7, that
the robot encounters an obstacle with sensors a or b
on (fig. 7(a)), and turns right only to collide with
another obstacle (fig. 7(b)). A simple modification of
the algorithm, so that “while turning to clear an
obstacle, if another obstacle is detected, there must be
a change in the sign of the steering angle”, solves the
problem as shown in fig. 7(c). Robot moves from fig.
7(a) to 7(c) and finally to 7(d) in the modified case.

 (a) (b)

 (c) (d)
Fig. 7. Choosing correct turn

Step 3 When the robot has cleared an obstacle it
generates a new path using the Cardinal Spline (fig.
8) to get the robot back on track towards the goal. The
spline is created using the following control points:
[Centre coordinates, Centre coordinates, Sensing
point, Look Ahead Point, Goal, Goal].

Fig. 8. Cardinal Spline

This sequence of control points is due to the Cardinal
Spline implementation (Twigg, 2003). For example,
if A, B, C and D are the control points (fig. 8) then
the segment starts at B and ends at C. The points A
and D are present only to define the shape of the line
segment BC . Therefore, the segment AB is drawn
with the control points A, A, B and C, BC is drawn
with the control points A, B, C and D, and so on.
Hence, to obtain the spline shown in fig. 8, the set of
control points must be A, A, B, C, D, E, E.

Our algorithm uses a Look Ahead Point (LAP),
described in step 4, as one of the control points for the
calculation of the new Cardinal Spline. Selecting a
sensing point as a control point, is described in step 5.

Fig. 9, illustrates the robot turning right according to
step 2 as it encounters a random obstacle with the left
side of the sensors and a new spline being generated
as described above.

Fig. 9. Random Obstacle Avoidance

Step 4 The originally calculated optimal (i.e. before
collision avoidance) path (fig. 9) is composed of
many line segments. To find a suitable LAP we first
have to find the point on a line segment on the
optimal path which is closest to the robot’s current
position. This will enable the robot to return onto the
optimal path, once the obstacle is cleared. The
following possibilities exist:

Possibility 1: In fig. 10, P indicates the coordinates of
the current position of the robot and the line segment,
P0 and P1 is the segment in consideration. The
following can be derived:

0bw P P ve= − = − (10)

vePPv +=−= 01 (11)

vewvC −==1 (12)

Thus, if C1 is smaller than (or equal to) zero the robot
is on the left hand-side of the line segment P0 and P1.

Fig. 10. Robot on the left hand side of the segment

Possibility 2: The following are derived from fig. 11

vePPw b= − = + (13) 0

vePPv +=−= 01 (14)

vevvC +==2 (15)

vewvC +==1 (16)

Now if w v then C≥ 1 ≥ C2 and the robot will be
on the right hand-side of the line segment P0 and P1

Fig. 11. Robot on the right hand side of the segment

Possibility 3: If neither 1 nor 2 above are valid, then
it must be the case that the following are valid:

vePPw b +=−= 0 (17)

vePPv +=−= 01 (18)

v
w

vv
wv

C
Cb ===

2

1 (19)

bvPPb += 0 (20)

Fig. 12. Robot above the segment

As it has already been mentioned, the original path is
composed of many short line segments and we can
find the point on the line segment that is closest to the
current position of the robot by checking the distance
between the coordinates of the robot and all the line
segments on the original path using the
aforementioned approach.

Step 5 Once the closest point on the original path is
found, we then calculate the LAP (Ringdahl, 2003).
This is a value defining a point on the path away from
the closest point and in the direction of the goal.
The importance of using a LAP is illustrated in fig 13
where the robot is meant to follow the curved path

round the known obstacles (solid lines). When an
unknown obstacle (dotted lines) appear in the path a
new path is calculated. Without a LAP the path may
be too “sharp” for the robot to follow or one leading
the robot into problems, fig. 13(a). With a LAP the
path is smoother and easy to follow, fig. 13(b).

(a) Without LAP

(b) With LAP
Fig. 13. Importance of LAP

If the distance between the robot and the goal is
shorter than that between the robot and the LAP then
the LAP is ignored. If it is not ignored the robot will
deviate from its path unnecessarily and may take a
long time to recover.

Step 6 In the example shown (fig. 9), the sensing
point C (fig. 6) is used as one of the control points for
evaluating the new path. If the steering angle is
negative (moving right), then the sensing point used
as a control point for the R.O.A algorithm will be the
sensing point C and if the current steering angle is
positive then the sensing point B is used instead. The
reason for choosing sensing points B or C rather than
the robot middle point, is that the latter is more likely
to result in a new path likely to lead the robot into
collision with the obstacle. By choosing the sensing
point C, the new path is further away from the
obstacle. Similarly, if points A or D were chosen then
the likelihood of a wider path (therefore likely to
collide with other objects) increases.

Figures 14 and 15 show the importance of the LAP.
In fig. 14(a) and 14(b), although the robot eventually
reaches the goal, it orbits around the obstacle before it
does so. This is due to the wrong values of LAP
which can cause the robot to keep going round the
object unnecessarily before it finally finds its way
towards the goal. In contrast, the robot reaches the

goal optimally in fig. 15(a) and 15(b) resulting from a
correct value of LAP.

(a)

(b)
Fig. 14. Using incorrect LAP values

(a)

(b)
Fig. 15. Using correct LAP values

Step 7 By using the centre coordinates of the robot,
the sensing point, LAP and the goal as control points
we can now create a new path using the Cardinal
Spline. If more obstacles are detected on the defined
path, repeat the previous steps until the robot reaches
the goal.

4. IMPLEMENTATION OF THE ALGORITHM

In fig. 16, dotted and solid lines indicate unknown
and known obstacles respectively. The optimal path
shown in fig. 16(a) is generated by consideration the
presence of known obstacles only using a modified
version of Dijkstra’s algorithm not discussed here.

The aim in fig. 16(b) and 16(c) is to use the ROA to
avoid the two unknown (dotted) obstacles which
appear on the optimal path that has been evaluated.
All paths that have been generated and considered
“on the fly” are shown here in this copy of the screen
capture, fig. 16(c). The path ultimately followed by
the robot is the one passing closest to the top right
side of the top known obstacle. It can be seen that the
robot has successfully managed to generate an
optimal path on the run, follow it and reach the goal.
Normally in known environments, the robot will

follow the predefined optimal path towards the goal.
When unknown obstacles are met however, the
procedure described in this paper takes control to
modify the path and move the robot safely towards
the goal whilst staying as close to the optimal path as
it is physically possible.

(a)

(b)

(c)
Fig. 16. Simulation Results

5. CONCLUSIONS

In all simulation examples we have tried the R.O.A
algorithm results in a fast and fairly smooth motion
and within the competence of its sensing system will
always find an optimal path and track it as much as it
is possible. In producing these results, we have
assumed that a) the robot cannot reverse and b) there
is no disturbances and noise in the sensing system.

In generating the algorithm we have made use of a
Look Ahead Point (LAP). It should be noted that the
latter is dependent on the size of the obstacle
encountered which, of course, for random or
unknown obstacles will generally be unknown. Our
solution relies on an educated guess based on
information about the position of the robot, the
coordinates of the point on the line segment

considered closest to the robot and the known goal or
optimal path position. Choosing the wrong LAP
value consistently results in the situation shown in fig.
14. Note that in this case the algorithm will not fail
but it will lose efficiency. One possible solution is
not to use a LAP until some mapping of the
environment has been made. Although a jerkier
motion may be generated, the algorithm still works.
Choosing the correct values of safety margins and
steering angle is also essential. Large safety margins
provide the robot with more safety but it is possible
that a path may not be found when one exists. It is
best if moderate values are used which can then be
increased or decreased based on acquired knowledge.
In our case the safety margins used were directly
related to the speed of the robot.

Increasing the magnitude of the steering angle also
provides the robot with a sharper, thus quicker, turn
when avoiding obstacles. However, the value has to
be within reasonable bounds which depend on the
physical limitations of the robot.

Improving the sensing system requires more
computing power and therefore the capacity and
memory of the robot has to be taken into account, as
the algorithm is meant to work in real-time.

Finally, we have not presented any results regarding
the convergence of this simple algorithm since the
approach is heavily dependent on sensory inputs and
the Look Ahead Point. The selection of the latter is
empirical and thus a theoretical evaluation of
convergence becomes almost meaningless in this case.
However, an in-depth analysis is in preparation for a
journal publication.

REFERENCES

Hausner, A. (2001) Parametric Curves,

http://www.dgp.toronto.edu/~ah/csc418/fall_2001
/notes/curves.html

IBM Corporation, GL3.2 Version 4.1 for AIX:
Programming Concepts (POWER-based Systems
Only),
http://publibn.boulder.ibm.com/doc_link/en_US/a
_doc_lib/aixprggd/gl32prgd/gl32prgd02.htm#ToC

Munoz, V. F. and Ollero (2003), A. Smooth trajectory
lanning method for mobile robots, Spain,
ttp://webpersonal.uma.es/~VFMM/PDF/p05.pdf

p
h

a
m
D
h

Ringdahl, O. (2003). Path tracking and obstacle
voidance algorithms for autonomous forest
achines, MSc Thesis in Umea University,
epartment of Computing Science,
ttp://www.cs.umu.se/~ringdahl/exjobb/

Twigg, C. (2003), Catmull-Rom splines,
http://graphics.cs.cmu.edu/nsp/course/15-
462/Fall04/assts/catmullRom.pdf

Ousingsawat J. and Campbell M. (2004). On-line
Estimation and Path Planning for Multiple
Vehicles in an Uncertain Environment,
International Journal of Nonlinear and Robust
Control, Vol. 14, No. 8, May 2004, pp. 741-766

http://www.dgp.toronto.edu/%7Eah/csc418/fall_2001/notes/curves.html
http://www.dgp.toronto.edu/%7Eah/csc418/fall_2001/notes/curves.html
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/gl32prgd/gl32prgd02.htm#ToC
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/gl32prgd/gl32prgd02.htm#ToC
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf

