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The quantum dynamics of atoms subjected to pairs of closely spaced 6 kicks from optical potentials are
shown to be quite different from the well-known paradigm of quantum chaos, the single §-kick system.
We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of
phase space and observe a spectral signature of a localization-delocalization transition from one cell to
several. We find that the eigenstates have localization lengths which scale with a fractional power L ~

h—0.75

and obtain a regime of near-linear spectral variances which approximate the *critical statistics™

relation 3,(L) = yL = %(1 — v)L, where v = (.75 is related to the fractal classical phase-space struc-
ture. The origin of the » = (.75 exponent is analyzed.
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The 6-kicked quantum rotor (QKR) is one of the most
studied paradigms of quantum chaos. Its implementation
using cold atoms in optical lattices [1] provided a convinc-
ing demonstration of a range of quantum chaos phenomena
including dynamical localization [2], the quantum suppres-
sion of chaotic diffusion. Recently, an experimental study
[3] of cesium atoms subjected to pairs of 6 kicks (26-KR)
showed surprisingly different behavior. The classical phase
space is chaotic but is made up of fast-diffusing regions
which are partly separated by slow-diffusing ““trapping
regions,” where the classical trajectories stick; the classical
analysis revealed a regime of anomalous diffusion corre-
sponding to long-lived correlations between kicks.

Further details are given in Ref. [4], but we show here
that the 26-KR has some unexpected guantum properties.
We show that there is a cellular phase-space structure
which arises from a novel oscillatory band structure of
the corresponding unitary matrix. One consequence is a
new type of localization-delocalization transition not seen
in the QKR, where states delocalize from single- to
multiple-cell occupancy; we show it has a clear spectral
signature. We have also found scaling behavior of the
localization lengths associated with a fractional exponent,
ie., L ~h %7 whereas for the well-studied QKR, L ~
h~'. A similar exponent is found for the decay of return
probabilities in the trapping regions, P(f) ~ ¢ *7. We
argue that the exponent 0.75 corresponds closely to the
value obtained for the dominant exponent of the golden
ratio cantorus [5,6]. We show that the spectral fluctuations
[both the nearest-neighbor statistics (NNS) and spectral
variances] show important differences with the QKR in
regimes where the delocalization of eigenstates is hindered
by cantori bordering the cells. We find a regime approx-
imating the form found in “critical statistics’’: The number
variances of the spectra are linear 3,(L) =~ yL for L > 1,
where y =~ 1/2(1 — v) <1 and v = 0.75.

The term critical statistics arose originally in relation
to the metal insulator transition (MIT) in systems with
disorder [7,8]. A new universal form of the distribution
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of nearest-neighbor eigenvalue spacings, termed ‘‘semi-
Poisson,” P(s) ~ sexp(—2s) was associated with the
MIT [7]. For critical statistics, a very interesting connec-
tion has been established between the multifractal charac-
teristics of the wave functions and those of the spectral
fluctuations [8]: The number variances of the spectra are
linear 3,(L) =~ yL for L > 1. The slope y =~1/2(1 —
D, /D) < 1 was shown to be related to a fractal dimension
D, obtained from the second moment of the wave function
and to D, the spatial dimension of the system. For inte-
grable dynamics, in contrast, ,(L) = L, while for the
Gaussian orthogonal ensemble (GOE), 3,(L) ~ Ln(L).
There is much current interest in so-called critical statistics
in non—Kolmogorov-Arnold-Moser (KAM) billiards (typi-
cally systems where the dynamics would be integrable
were it not for a discontinuity in the potential) [9], which
show multifractal scalings and linear variances related to
D,. Below, we apply the term critical statistics in this
broader sense, rather than the MIT critical point. Multi-
fractal behavior has been demonstrated for Cantor spectra
[10] where the level density itself is not smooth. However,
until now, critical statistics have not been seen in—and
were not thought to be relevant to—KAM systems. These
are systems, ubiquitous in many areas of physics, where
the transition to chaos as a perturbing parameter is in-
creased is quite gradual.

The Hamiltonian of the 26-KR is H(x, p) = (p?/2) +
Kcosxd ,6(t — nT) + 6(t — nT + €); there is a short time
interval € between the kicks in each pair and a much longer
time =~ T between the pairs themselves. In experiments,
€ ~0.01-0.1 < T and 7 =2 — 1/4 in the usual rescaled
units [3].

A study of the spectral fluctuations of a time-periodic
system involves a study of the eigenstates and eigen-
values of the one-period time-evolution operator U(T, 0).
For the QKR, the matrix representation, in an angular
momentum basis |), has elements U, = Uf‘eeU}‘jfk o
exp(—il’Th/2)J,-,,(¥). The “kick” terms J,_, (%) are
Bessel functions and give the matrix the banded form

© 2006 The American Physical Society

provided by UCL Discovery



https://core.ac.uk/display/1678172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.96.024103

PRL 96, 024103 (2006)

PHYSICAL REVIEW LETTERS

week ending
20 JANUARY 2006

FIG. 1 (color online). Left: Structure of time-evolution matrix
U(T, 0), for the QKR, in a basis of momentum states, exemplify-
ing the typical band structure of a band random matrix. Right:
U(T, 0) for our system, the 28-KR, showing the new form with
oscillating bandwidth. Before delocalization, eigenstates are
confined within a single “momentum cell” of dimension N.

illustrated in Fig. 1(a). Since J,_,,(x) =~ 0 if |[ — m| > x,
we define the usual bandwidth b = K/h. The resulting
statistics are approximated by those of band random matrix
theory (BRMT) [11] rather than of RMT: i.e., if the di-
mension of the U(T,0) matrix is N,y the statistics are
Poissonian for N, >> b; the eigenstates of the BRMT
are exponentially localized in /, with a localization length
in momentum (p = [h) which equals L, ~ K?/h, so states
separated in p by > L, will be largely uncorrelated.

For the 26-KR, the corresponding matrix elements are

K

. K 2
Ulm — e7tlZ(Tfe)h/22117k<5>.]k7m<%>67zk-/2he' (1)
k

As the U(T, 0) matrix is quite insensitive to (T — €), the
quantum dynamics largely depends only on two scaled
parameters K, = Ke and A, = he, rather than on K, e,
and # independently: The remainder of the matrix is in-
variant if K, and %, are kept constant.

An analytical form for the bandwidth of U(T, 0) was
obtained in Ref. [4]: The bandwidth oscillates sinusoidally
between a maximum value b, = 2K/ for angular mo-
menta [ =~ 2n7/(he) and a minimum value b, = 0 for [ ~
(2n + 1)77/(he). These minima correspond to the trapping
momenta p = Ih = (2n + 1)7/€ seen in experiment. The
corresponding band structure of U is illustrated in
Fig. 1(b): The band oscillates, and U is approximately
partitioned into submatrices of dimension N = ZE—Z corre-
sponding to separate momentum cells.

The key to our work is our ability to vary the transport
between the cells (by opening or closing the classical
fractal “gates’ between them) separately from the degree
of filling of each individual cell. We begin by introducing a
“filling factor” R, where

K? K2
R=—= € 2
Nh*  2mh, @

measures the degree of filling of a cell by a typical state in
the absence of confinement. Clearly, if there is no transport
between cells, the states simply fill the cell uniformly, and,

evenif R >> 1, the localization lengths L, ~ Nh. We begin
by defining a localized limit, where R <1 and L, <
Nh ~ 2{; typical states are insensitive to the boundary
conditions of the cell, and this limit is Poissonian. At the
other extreme, if we allow strong coupling between cells,
we move to an opposite limit as an increasing proportion of
eigenstates become delocalized over several cells.

We now investigate the transport. A classical analysis
[4,12] shows that, if we take Ke << 1 and expand initial
momenta of the jth trajectory about the trapping values
p; = (2n+ 1)m/e + &p;, we can show that much of the
trapping region is given by a classical map quite similar to
the well-known standard map:

€ . .
Pje2=pj— KZE sin(2x;) — K8 p/ecosx;, 3)

Xjpp =X+ pioT. 4)

Over much of the trapping region, the second term in
Eq. (3) is dominant, for parameter regimes of interest.
Then the kick impulse has a 7r/2 phase relative to the
full map [the 2-kick map gives a pair of V/(x) = — sinx
type impulses] and a momentum-dependent effective kick
strength K’ = Kedp;. A detailed study of classical phase
space [12] shows that at low K’ the resonance structure is
locally quite similar to the standard map. Hence, in the
regime Kedp; ~ 1, we expect the “golden ratio” cantori,
which result from the last invariant manifold of a KAM
system, to provide the strongest barrier to transport [13].
Though we want K€ to be small, if Ke < 0.1, phase space
becomes too regular. Hence, here we find that the regime of
interest is within the interval 0.1 = K, = 0.7.

We investigated the corresponding quantum transport by
evolving a set of wave packets ®(p, r) in time [where
®(p,t = 0) = 8(p)] for a range of K, and h,, until the
momentum spreading is arrested by dynamical localization
at t = 1. The resulting probability distributions |®(p, >
ty)|> = N(p) have a characteristic “staircase’ structure,
shown in Fig. 2(a). At each step, there is a steep drop in
probability:

N(p); = e *N(p)- 5)

[where N(p)- represent probabilities before (—) and after
(+) the step] concentrated over the trapping region (~1/6
of a cell in every case [4]). The staircase tracks an expo-
nential envelope N(p) ~ exp(—2|p|/Ley,), Where Ley, =
. We average over several steps, to obtain d as a function
of K, and 7.. In Fig. 2(b), we show that, quite accurately,
d = n27/f(K,), where f(K.) is some function of the

scaled kick strength K.. We estimate

3.5h075

d
K?

(6)

The parameter d [defined by Eq. (5)] quantifies the trans-
port between the cells and complements the filling factor
R. The inner steps of the staircase have been seen in the
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FIG. 2. (a) Final (r— o) momentum distributions, N(p)
(slightly smoothed) for quantum wave packets of the 26-QKR
for K =20, € = 0.0175, and 7 = 1/8 and 1/30, respectively.
N(p) for both the eigenstates and wave packets shows a long-
range staircase form, which on average follows the exponential
N(p) ~exp[—2(p — p)]/Lexp, Where Ley,/2 = 27/he; the h
dependence of L, is determined by the drop in probability d
at each step. (b) Ln(2d) plotted against Ln(he) lies on straight
lines of invariant K, = Ke, with constant slope 0.75. Hence, d =
(h€)*™ and Ly, > h~ %7 —in contrast with the well-known
QKR result Ly, « h~!. The R = 1 border is shown: For R >
1 (below the line), eigenstates fill much of a single cell. The
delocalization border is shown at d =~ 2: For d > 2 (above the
line), over 98% of the probability of typical eigenstates is
confined to a single cell; for d < 2, eigenstates begin to occupy
multiple cells. Statistics are presented later in Fig. 3 for points
corresponding to the dotted line.

momentum distributions of atoms in optical lattices [3,14];
therefore, though existing data are not in the critical re-
gime, in principle, the form of d is experimentally
verifiable.

We are unaware of another KAM system where a single
power-law exponent is so dominant. Typically, power-law
behavior is associated with mixed phase-space behavior,
where many competing exponents are found [10]. We note
also that the value 0.75 coincides closely with one of the
scaling exponents found in Ref. [5] for the golden ratio
cantori: These were o = 0.65 (in the most unstable part of
the cantori) and o = 0.76 (most stable regions). There
have been previous studies of transport in a region near
golden ratio cantori. These have found L ~ 2% [15] but

only in a momentum band region “local” to the cantori.
We note that the L ~ h"“ dependence is associated with
the physical process termed ‘‘retunneling’ [6] associated
with cantori which are classically “open” but for which %
is too large to permit free quantum transport. An abrupt
change to an L ~ 7~ 7 is observed when the cantori open
for quantum transport and L is determined instead by
localization. It has been argued that the reason all previous
studies have found L ~ 71060 [6] is that the retunneling
transport favors the unstable direction. To our knowledge,
ours is the only example corresponding to the dominant
exponent of the golden ratio cantori; we attribute this to the
fact that we are always in a dynamical localization regime,
and localization will select the most stable parts of the
fractal cantori regions, where, at low K, elliptic fixed
points are found.

We can now investigate the statistics as a function of the
filling factor R and the intercell transport parameter d. Full
details are given in Ref. [4], but in brief: We considered
two types of boundary conditions (BCs). (1) Periodic BCs,
i.e., solving the problem on a ““torus’ in momentum space,
a well-known procedure for the QKR [11]. (2) Open BCs,
where we diagonalize U(T, 0) with N, = 10000, but N =
1000; we then assigned the ith eigenstate to the nth cell if
(2n + 1)m/e = (p;) = (2n + 3)7/€ and calculated statis-
tics for each cell. In both cases, we averaged over
=~ 20 cells to improve significance. For periodic BCs,
eigenstates cannot escape from a single cell of width N#.
For open BCs, however, they can delocalize onto neighbor-
ing cells.

In Fig. 3(a), the 3,(L) statistics are presented. These
represent the variances in the spectral number density
3,(L) = (L?) — (L)*, where we consider a stretch of the
spectrum with an average (L) levels. A fit to the best
straight line in the range L = 5-40 yields an estimate of
the slope y. In Fig. 3(b), we show the nearest-neighbor
P(S) statistics. We quantify the deviation of P(S) from
Pp(S) and Pgog(S), its Poisson and GOE limits, respec-
tively, with a parameter Q [16]:

0 U(P(S') — Pgor(S")dS')

T TS (P — Poop(S))aS”

(N

Hence, QO = 0 indicates a Poisson distribution, while Q =
1 signals a GOE distribution. We take Sy = 0.3.

The results of Fig. 3 demonstrate that the statistics are
not too sensitive to boundary conditions for d > 2 (see also
[4]). However, for d = 2, while the states with periodic
BCs (effectively restricted to a matrix of dimension N)
move gradually to the GOE limit, for the open BCs, at
delocalization the statistics tend back to the Poisson limit.
This initially surprising behavior occurs because, after
delocalization, one finds increasing numbers of states for
which (p;) assigns them to the nth cell but for which much
of the state’s probability is actually found in neighboring
cells [4]. Hence, states within each spectrum of N eigen-
values become progressively uncorrelated. This apparent
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FIG. 3. (a) The 3,(L) statistics for the 26-KR. Approximately
linear variances with slope y = 0.125 are found in the inter-
mediate regime. The solid line indicates the line 3,(L) =
0.125L + ¢ corresponding to the critical statistics slope y =
1/2(1 — »), where v =~ 0.75 is the fractional exponent obtained
previously. (b) Corresponding nearest-neighbor statistics for
R = 0.8 and R = 1.3 of an intermediate form, which is com-
pared with the semi-Poisson and GOE forms. The insets show
the effect of the boundary conditions. Before delocalization (d >
2), the results are insensitive to boundary conditions. If d <2,
for periodic BCs (points indicated by asterisks), the statistics
make a transition to GOE; for open BCs (points indicated by
circles), the statistics tend to Poissonian behavior. The arrows
indicate the d = 2 border.

failure of the procedure of assigning states to a given cell,
in fact, provides a rather good “marker” for the onset of
delocalization and yields a clear ““turning point” in both
the NNS and 3,(L) behavior. A detailed study of the
multicell regime remains to be undertaken; models of the
statistics for chaotic systems with a nonuniform rate of
exploration of phase space [17] may be relevant here.

Of further interest here is an intermediate regime, found
for both boundary conditions for R = 1 and d > 2. Over a
wide range of parameters and different cell sizes [4], we
find approximately linear variances, for L > 1 and L <
N, with slope y = 0.125. The inset in Fig. 3(a) plots the
values of y calculated along the vertical dotted line in
Fig. 2(b) for periodic and open boundary conditions. We
note that a study of the decay of return probabilities
obtained P(t) = [(¢(t = 0)|¢(2))|*> ~ +~ 7> for wave pack-
ets started in the trapping regions (see [4]). The value of
x = 0.125 corresponds to the value which would be ob-
tained from the MIT relation, y = 1/2(1 — D,), if D, =
0.75; in the MIT, return probabilities with P(f) ~ ¢t P2
were similarly found. We suggest that this represents a

KAM analogue of behavior associated with critical
statistics.

In summary, we have shown that the behavior of the
20-kicked system is rather different from the standard
QKR. We have identified a spectral signature of the novel
localization-delocalization transition that the system ex-
hibits. We have also identified signatures of the fractal
phase-space structure of the cell borders. The trapping
regions may have applications in atom optics experiments,
as a means of manipulating the momentum distribution of
the atomic cloud.
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