2,228 research outputs found

    The RTA Betatron-Node Experiment: Limiting Cumulative BBU Growth In A Linear Periodic System

    Get PDF
    The successful operation of a Two-Beam accelerator based on extended relativistic klystrons hinges upon decreasing the cumulative dipole BBU growth from an exponential to a more manageable linear growth rate. We describe the theoretical scheme to achieve this, and a new experiment to test this concept. The experiment utilizes a 1-MeV, 600-Amp, 200-ns electron beam and a short beamline of periodically-spaced rf dipole-mode pillbox cavities and solenoid magnets for transport. Descriptions of the beamline are presented, followed by theoretical studies of the beam transport and dipole-mode growth.Comment: 3 pages, 3 figures. Submitted to XX Int'l. LINAC Conferenc

    Hot-bench simulation of the active flexible wing wind-tunnel model

    Get PDF
    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described

    Kinematic rate control of simulated robot hand at or near wrist singularity

    Get PDF
    A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears

    Tunable coupling in circuit quantum electrodynamics with a superconducting V-system

    Full text link
    Recent progress in superconducting qubits has demonstrated the potential of these devices for the future of quantum information processing. One desirable feature for quantum computing is independent control of qubit interactions as well as qubit energies. We demonstrate a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independent control over the qubit energy and dipole coupling to a superconducting cavity. We demonstrate dynamic access to the strong coupling regime by tuning the coupling strength from less than 200 kHz to more than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multi-qubit system.Comment: 5 pages, 4 figure

    Non-equilibrium delocalization-localization transition of photons in circuit QED

    Full text link
    We show that photons in two tunnel-coupled microwave resonators each containing a single superconduct- ing qubit undergo a sharp non-equilibrium delocalization-localization (self-trapping) transition due to strong photon-qubit coupling. We find that dissipation favors the self-trapped regime and leads to the possibility of observing the transition as a function of time without tuning any parameter of the system. Furthermore, we find that self-trapping of photons in one of the resonators (spatial localization) forces the qubit in the opposite resonator to remain in its initial state (energetic localization). This allows for an easy experimental observation of the transition by local read-out of the qubit state.Comment: 4 pages, 5 figure

    Dispersive Photon Blockade in a Superconducting Circuit

    Full text link
    Mediated photon-photon interactions are realized in a superconducting coplanar waveguide cavity coupled to a superconducting charge qubit. These non-resonant interactions blockade the transmission of photons through the cavity. This so-called dispersive photon blockade is characterized by measuring the total transmitted power while varying the energy spectrum of the photons incident on the cavity. A staircase with four distinct steps is observed and can be understood in an analogy with electron transport and the Coulomb blockade in quantum dots. This work differs from previous efforts in that the cavity-qubit excitations retain a photonic nature rather than a hybridization of qubit and photon and provides the needed tolerance to disorder for future condensed matter experiments.Comment: 4 pages, 3 figure
    • …
    corecore