43 research outputs found
Vaccine strategies: Optimising outcomes
AbstractSuccessful immunisation programmes generally result from high vaccine effectiveness and adequate uptake of vaccines. In the development of new vaccination strategies, the structure and strength of the local healthcare system is a key consideration. In high income countries, existing infrastructures are usually used, while in less developed countries, the capacity for introducing new vaccines may need to be strengthened, particularly for vaccines administered beyond early childhood, such as the measles or human papillomavirus (HPV) vaccine. Reliable immunisation service funding is another important factor and low income countries often need external supplementary sources of finance. Many regions also obtain support in generating an evidence base for vaccination via initiatives created by organisations including World Health Organization (WHO), the Pan American Health Organization (PAHO), the Agence de Médecine Préventive and the Sabin Vaccine Institute. Strong monitoring and surveillance mechanisms are also required. An example is the efficient and low-cost approaches for measuring the impact of the hepatitis B control initiative and evaluating achievement of goals that have been established in the WHO Western Pacific region. A review of implementation strategies reveals differing degrees of success. For example, in the Americas, PAHO advanced a measles-mumps-rubella vaccine strategy, targeting different population groups in mass, catch-up and follow-up vaccination campaigns. This has had much success but coverage data from some parts of the region suggest that children are still not receiving all appropriate vaccines, highlighting problems with local service infrastructures. Stark differences in coverage levels are also observed among high income countries, as is the case with HPV vaccine implementation in the USA versus the UK and Australia, reflecting differences in delivery settings. Experience and research have shown which vaccine strategies work well and the factors that encourage success, which often include strong support from government and healthcare organisations, as well as tailored, culturally-appropriate local approaches to optimise outcomes
Detection of Insulin Resistance in Obese young men and its association with metabolic abnormalities in Najran, Saudi Arabia
Abstract: The association between obesity and type 2 diabetes mellitus (T2DM) has been recognized for decades. The major basis for this link is the ability of obesity to engender insulin resistance (IR). Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) is an indirect marker of IR. The present study evaluated the usefulness of HOMA-IR in the prediction of the risk of the development of T2DM among overweight and obese individuals in Najran, Saudi Arabia. This study was carried out on 116 male individuals divided into 3 groups. Of these, 20 healthy control (GI), 44 prediabetic overweight and obese individuals with high normal serum glucose levels (GII) and 52 diabetic overweight and obese individuals with high serum glucose levels (GIII). Body mass index (BMI) was calculated for all individuals. In addition, fasting serum glucose and insulin levels, lipid profile and liver and kidney function tests were estimated for all individuals. The mean BMI was 21.84±1.28 kg/m 2 in GI, 28.68±2.42 kg/m 2 in GII and 33.82±2.78 kg/m 2 in GIII. The mean fasting serum glucose was 128.29±27.92 mg/dl in GII and 159.46±44.86 mg/dl in GIII. Such findings were correlated with increased fasting serum insulin levels (21.57±2.58 µU/ml in GII and 37.28±6.15 µU/ml in GIII) compared to GI (16.22±6.23 µU/ml). The mean HOMA-IR was 5.77±1.71 in GII and 12.67±4.07 in GIII compared to GI (4.07±1.04). We conclude that, increased BMI was associated with increased incidence of Insulin Resistance, dyslipidaemia and hyperuricaemia among overweight and obese individuals in Najran, Saudi Arabia.
Ameliorating heat stressed conditions in wheat by altering its physiological and phenotypic traits associated with varying nitrogen levels
Currently, more than half of the global nations cultivating wheat crops are facing severe consequences of climate change and its associated heat stress in terms of quantitative and qualitative yield losses. Plants exposed to heat stress need a balanced and adequate amount of mineral nutrients to counter its ill effects. Therefore, the present study was designed to investigate the potential effects of heat stress applied during the vegetative growth period (Zadoks growth scale: ZGS 5-60) on physiological and phenotypic traits of wheat (Triticum aestivum) crop subjected to variable rates of nitrogen (N). In this experiment, wheat plants of cv. ‘Punjab-2011’ were exposed to two levels of temperature i.e. heat stress (HS) and control or non-heat stress (NHS), and three N rates (N50 = 50 kg ha-1, N100= 100 kg ha-1 and N150 = 150 kg ha-1). The experiment was executed under controlled conditions in a completely randomized design (CRD) with six replications. One set of eighteen pots containing wheat seedlings was placed in a compartment of the greenhouse under heat-stressed conditions, while another set was placed in another compartment under non-heated conditions. The greenhouse compartments were equipped with a heating and cooling system to maintain desired ecological conditions. Pots in heated chamber were kept for 60 days from emergence (ZGS = 5-60), and then shifted to non-heated chamber till harvesting. The temperature in heat stress treatment was almost 2 ± 0.47 °C higher than in non-heated treatment. The results indicated that HS significantly reduced the photosynthetic rate by 42.52%, leaf photosynthetic efficiency by 56.82%, chlorophyll scores by 20.11%, relative water contents (RWC) by 12.81%, tillers by 48.21%, grain weight by 21.47% and grain yield by 68.20% relative to NHS conditions. These reductions were more prominent in plants subjected to a limited N dose rate (50 kg N ha-1). Furthermore, the results also revealed higher transpiration rate, stomatal conductance, and membrane ruptures under HS with N50 treatment. However, N150 treatment compensated for the detrimental effects of HS on wheat plants by improving the photosynthetic rate and efficiencies, higher RWC, more stability of membrane and pigments, more tillers, and higher grain weight, and grain yield of wheat. Additionally, grain yield was negatively correlated with transpiration rate, stomatal conductance, internal CO2 concentration, and membrane leakage. In conclusion, a high dose rate of N under high temperatures during vegetative growth could alleviate the magnitude of penalties to grain yield and enhance the potential of wheat crops to withstand heat-induced detrimental effects
Vitamin D deficiency and insufficiency in Africa and the Middle East, despite year-round sunny days
Exposure to sunlight, specifically ultraviolet B (UVB), is essential for cutaneous vitamin D synthesis. Despite significant daily sunlight availabilityin Africa and the Middle East, persons living in these regions are frequently vitamin D insufficient or deficient. Vitamin D insufficiency(25-hydroxyvitamin D (25(OH)D) between 15 and 20 ng/mL (37.5 - 50 nmol/L)) has been described in various population groups, ranging from 5%to 80%. Risk factors include traditional dress and avoidance of sunlight exposure, and multiple dietary factors as a result of specific cultural beliefs.Vitamin D resistance due to calcium deficiency mechanisms has been described in similar population groups, which may lead to hypovitaminosis D.Should the new diseases related to hypovitaminosis D prove to be truly associated, Africa and the Middle East will become an epicentrefor many of these conditions. Urgent attention will need to be paid to cultural dress and dietary behaviours if hypovitaminosis D is to betaken seriously. Should such factors not be correctable, new strategies for supplementation or food fortification will have to be devised
Enhancing crop resilience through thiamine: implications for sustainable agriculture in drought-stressed radish
During 21st century, abiotic stress has adversely affected the agriculture crop production around the globe. Keeping in view the food requirement under water shortage condition, a study was planned to investigate the effect of thiamine application on radish crop under drought stress conditions on plant. For study purpose, two varieties of locally available radish (‘Early-Milo’ and ‘Laal-Pari’) were grown with normal water application as well as thiamine (100 mg L-1) application while maintaining a stress condition (60% field capacity). Increasing water deficit stress linearly reduced plant growth, yield and biomass in both varieties by reducing water use efficiency, while significantly enhanced these attributes with thiamine application. Thiamine application under drought stress exerted significant impacts on physiological attributes in both varieties, including enhanced osmolytic attribute in drought conditions and improvements in superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), H2O2, and malondialdehyde (MDA) activities in plant leaves. Antioxidant and osmoprotectant upregulation positively linked to radish crop's drought tolerance. Moreover, PCA and heatmap analysis revealed a significant interdependence among various traits and interconnected in determining the crop's capacity to sustain growth under conditions of drought stress. In crux, thiamine application conclusively enhances radish growth, yield, biomass, physio-chemical and osmolytic attributes, ionic composition and enzymatic antioxidant potential. Therefore, it is recommended to consider the application of thiamine in commercial agriculture practices to mitigate the negative effects of drought stress on radish crop production
Remediation of wastewater by biosynthesized manganese oxide nanoparticles and its effects on development of wheat seedlings
IntroductionNanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties.MethodsIn the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy.ResultsThe objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%.DiscussionIt can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings
A source of resistance against yellow mosaic disease in soybeans correlates with a novel mutation in a resistance gene
Yellow mosaic disease (YMD) is one of the major devastating constraints to soybean production in Pakistan. In the present study, we report the identification of resistant soybean germplasm and a novel mutation linked with disease susceptibility. Diverse soybean germplasm were screened to identify YMD-resistant lines under natural field conditions during 2016-2020. The severity of YMD was recorded based on symptoms and was grouped according to the disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR), moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible (MS), and highly susceptible (HS), respectively. A HR plant named “NBG-SG Soybean” was identified, which showed stable resistance for 5 years (2016-2020) at the experimental field of the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot area for virus infection. HS soybean germplasm were also identified as NBG-47 (PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv. NARC-2021. The YMD adversely affected the yield and a significant difference was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/ha), respectively. The YMD incidence was also measured each year (2016-2020) and data showed a significant difference in the percent disease incidence in the year 2016 and 2018 and a decrease after 2019 when resistant lines were planted. The resistance in NBG-SG soybean was further confirmed by testing for an already known mutation (SNP at 149th position) for YMD in the Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in the field was found positive for the said mutation. Moreover, an ortholog of the CYR-1 viral resistance gene from black gram was identified in soybean as Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of susceptible germplasm. The characterized soybean lines from this study will assist in starting soybean breeding programs for YMD resistance. This is the first study regarding screening and molecular analysis of soybean germplasm for YMD resistance