71,371 research outputs found
Decay Modes of the Hoyle State in
Recent experimental results give an upper limit less than 0.043\% (95\% C.L.)
to the direct decay of the Hoyle state into 3 respect to the sequential
decay into {Be}+. We performed one and two-dimensional tunneling
calculations to estimate such a ratio and found it to be more than one order of
magnitude smaller than experiment depending on the range of the nuclear force.
This is within high statistics experimental capabilities. Our results can also
be tested by measuring the decay modes of high excitation energy states of
C where the ratio of direct to sequential decay might reach 10\% at
(C)=10.3 MeV. The link between a Bose Einstein Condensate (BEC) and
the direct decay of the Hoyle state is also addressed. We discuss a
hypothetical `Efimov state' at (C)=7.458 MeV, which would mainly
{\it sequentially} decay with 3 of {\it equal energies}: a
counterintuitive result of tunneling. Such a state, if it would exist, is at
least 8 orders of magnitude less probable than the Hoyle's, thus below the
sensitivity of recent and past experiments.Comment: 6 pages, 2 figures, accepted by Phys. Lett.
Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses
The two outer triangular caustics (regions of infinite magnification) of a
close binary microlens move much faster than the components of the binary
themselves, and can even exceed the speed of light. When , where
is the caustic speed, the usual formalism for calculating the lens
magnification breaks down. We develop a new formalism that makes use of the
gravitational analog of the Li\'enard-Wiechert potential. We find that as the
binary speeds up, the caustics undergo several related changes: First, their
position in space drifts. Second, they rotate about their own axes so that they
no longer have a cusp facing the binary center of mass. Third, they grow larger
and dramatically so for . Fourth, they grow weaker roughly in
proportion to their increasing size. Superluminal caustic-crossing events are
probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap
Transition behavior of k-surface from hyperbola to ellipse
The transition behavior of the k-surface of a lossy anisotropic indefinite slab is investigated. It is found that, if the material loss is taken into account, the k-surface does not show a sudden change from hyperbola to the ellipse when one principle element of the permittivity tensor changes from negative to positive. In fact, after introducing a small material loss, the shape of the k-surface can be a combination of a hyperbola and an ellipse, and a selective high directional transmission can be obtained in such a slab
Constraining the HI-Halo Mass Relation From Galaxy Clustering
We study the dependence of galaxy clustering on atomic gas mass using a
sample of 16,000 galaxies with redshift in the range of
and HI mass of , drawn from the 70% complete sample
of the Arecibo Legacy Fast ALFA survey. We construct subsamples of galaxies
with above different thresholds, and make volume-limited
clustering measurements in terms of three statistics: the projected two-point
correlation function, the projected cross-correlation function with respect to
a reference sample selected from the Sloan Digital Sky Survey, and the
redshift-space monopole moment. In contrast to previous studies, which found
no/weak HI-mass dependence, we find both the clustering amplitude on scales
above a few Mpc and the bias factors to increase significantly with increasing
HI mass for subsamples with HI mass thresholds above . For HI
mass thresholds below , while the measurements have large
uncertainties caused by the limited survey volume and sample size, the inferred
galaxy bias factors are systematically lower than the minimum halo bias factor
from mass-selected halo samples. The simple halo model, in which galaxy content
is only determined by halo mass, has difficulties in interpreting the
clustering measurements of the HI-selected samples. We extend the simple model
by including the halo formation time as an additional parameter. A model that
puts HI-rich galaxies into halos that formed late can reproduce the clustering
measurements reasonably well. We present the implications of our best-fitting
model on the correlation of HI mass with halo mass and formation time, as well
as the halo occupation distributions and HI mass functions for central and
satellite galaxies. These results are compared with the predictions from
semi-analytic galaxy formation models and hydrodynamic galaxy formation
simulations.Comment: Accepted for publication in ApJ. The 2PCF measurements are available
at http://sdss4.shao.ac.cn/guoh
From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)
Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC)
whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states
have been shown to result from the critical role of the strong SOC in the
iridate. Our investigation of structural, transport, and magnetic properties
reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4
directly adds holes to the t2g bands, reduces the SOC and thus rebalances the
competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru
doping driving a rich phase diagram is a structural phase transition from a
distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that
accompanies a phase transition from an antiferromagnetic-insulating state to a
paramagnetic-metal state. We also make a comparison drawn with Rh doped
Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure
Expression of the DNA mismatch repair proteins hMLH1 and hPMS2 in normal human tissues.
hMLH1 and hPMS2 are part of the DNA mismatch repair complex. Mutations in these genes have been linked to hereditary non-polyposis colon cancer; they also occur in a variety of sporadic cancers. Western blot analysis and immunohistochemistry demonstrated that hMLH1 and hPMS2 are widely expressed nuclear proteins with a distribution pattern very similar to that previously described for hMSH2. These observations showing similar localization of hMLH1 and hPMS2 with hMSH2 are consistent with the biochemical function of these proteins in DNA mismatch repair
- …