118 research outputs found

    Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales

    Get PDF
    Terrestrial vegetation influences climate by modifying the radiative-, momentum-, and hydrologic-balance. This paper contributes to the ongoing debate on the question whether positive biogeophysical feedbacks between vegetation and climate may lead to multiple equilibria in vegetation and climate and consequent abrupt regime shifts. Several modelling studies argue that vegetation-climate feedbacks at local to regional scales could be strong enough to establish multiple states in the climate system. An Earth Model of Intermediate Complexity, PlaSim, is used to investigate the resilience of the climate system to vegetation disturbance at regional to global scales. We hypothesize that by starting with two extreme initialisations of biomass, positive vegetation-climate feedbacks will keep the vegetation-atmosphere system within different attraction domains. Indeed, model integrations starting from different initial biomass distributions diverged to clearly distinct climate-vegetation states in terms of abiotic (precipitation and temperature) and biotic (biomass) variables. Moreover, we found that between these states there are several other steady states which depend on the scale of perturbation. From here global susceptibility maps were made showing regions of low and high resilience. The model results suggest that mainly the boreal and monsoon regions have low resiliences, i.e. instable biomass equilibria, with positive vegetation-climate feedbacks in which the biomass induced by a perturbation is further enforced. The perturbation did not only influence single vegetation-climate cell interactions but also caused changes in spatial patterns of atmospheric circulation due to neighbouring cells constituting in spatial vegetation-climate feedbacks. Large perturbations could trigger an abrupt shift of the system towards another steady state. Although the model setup used in our simulation is rather simple, our results stress that the coupling of feedbacks at multiple scales in vegetation-climate models is essential and urgent to understand the system dynamics for improved projections of ecosystem responses to anthropogenic changes in climate forcing

    Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem?

    Get PDF
    Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established

    Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants

    Get PDF
    How species coexist despite competing for the same resources that are in limited supply is central to our understanding of the controls on biodiversity. Resource partitioning may facilitate coexistence, as co-occurring species use different sources of the same limiting resource. In plant communities, however, direct evidence for partitioning of the commonly limiting nutrient, phosphorus (P), has remained scarce due to the challenges of quantifying P acquisition from its different chemical forms present in soil. To address this, we used 33P to directly trace P uptake from DNA, orthophosphate and calcium phosphate into monocultures and mixed communities of plants growing in grassland soil. We show that co-occurring plants acquire P from these important organic and mineral sources in different proportions, and that differences in P source use are consistent with the species’ root adaptations for P acquisition. Furthermore, the net benefit arising from niche plasticity (the gain in P uptake for a species in a mixed community compared to monoculture) correlates with species abundance in the wild, suggesting that niche plasticity for P is a driver of community structure. This evidence for P resource partitioning and niche plasticity may explain the high levels of biodiversity frequently found in P-limited ecosystems worldwide

    Make EU trade with Brazil sustainable

    Get PDF
    corecore