213 research outputs found

    Backscatter of Ultrasonic Waves from a Rough Layer

    Get PDF
    Kirchhoff approximation used to calculate backscatter of ultrasonic waves from rough laye

    Why is the bandwidth of sodium observed to be narrower in photoemission experiments?

    Full text link
    The experimentally predicted narrowing in the bandwidth of sodium is interpreted in terms of the non-local self-energy effect on quasi-particle energies of the electron liquid. The calculated self-energy correction is a monotonically increasing function of the wavenumber variable. The usual analysis of photo-emission experiments assumes the final state energies on the nearly-free-electron-like model and hence it incorrectly ascribes the non-local self-energy correction to the final state energies to the occupied state energies, thus leading to a seeming narrowing in the bandwidth.Comment: 9 page

    Transport through a quantum ring, a dot and a barrier embedded in a nanowire in magnetic field

    Full text link
    We investigate the transport through a quantum ring, a dot and a barrier embedded in a nanowire in a homogeneous perpendicular magnetic field. To be able to treat scattering potentials of finite extent in magnetic field we use a mixed momentum-coordinate representation to obtain an integral equation for the multiband scattering matrix. For a large embedded quantum ring we are able to obtain Aharanov-Bohm type of oscillations with superimposed narrow resonances caused by interaction with quasi-bound states in the ring. We also employ scattering matrix approach to calculate the conductance through a semi-extended barrier or well in the wire. The numerical implementations we resort to in order to describe the cases of weak and intermediate magnetic field allow us to produce high resolution maps of the ``near field'' scattering wave functions, which are used to shed light on the underlying scattering processes.Comment: RevTeX, 13 pages with included postscript figures, high resolution version available at http://hartree.raunvis.hi.is/~vidar/Rann/VG_04.pd

    Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers

    Full text link
    Coherent electron transport through a quantum channel in the presence of a general extended scattering potential is investigated using a T-matrix Lippmann-Schwinger approach. The formalism is applied to a quantum wire with Gaussian type scattering potentials, which can be used to model a single impurity, a quantum dot or more complicated structures in the wire. The well known dips in the conductance in the presence of attractive impurities is reproduced. A resonant transmission peak in the conductance is seen as the energy of the incident electron coincides with an energy level in the quantum dot. The conductance through a quantum wire in the presence of an asymmetric potential are also shown. In the case of a narrow potential parallel to the wire we find that two dips appear in the same subband which we ascribe to two quasi bound states originating from the next evanescent mode.Comment: RevTeX with 14 postscript figures include

    Tunneling into a two-dimensional electron system in a strong magnetic field

    Full text link
    We investigate the properties of the one-electron Green's function in an interacting two-dimensional electron system in a strong magnetic field, which describes an electron tunneling into such a system. From finite-size diagonalization, we find that its spectral weight is suppressed near zero energy, reaches a maximum at an energy of about 0.2e2/ϵlc0.2e^{2}/\epsilon l_{c}, and decays exponentially at higher energies. We propose a theoretical model to account for the low-energy behavior. For the case of Coulomb interactions between the electrons, at even-denominator filling factors such as ν=1/2\nu=1/2, we predict that the spectral weight varies as eω0/ωe^{-\omega_0/|\omega|}, for ω0\omega\rightarrow 0

    Effective field theory of 3He

    Full text link
    3He and the triton are studied as three-body bound states in the effective field theory without pions. We study 3He using the set of integral equations developed by Kok et al. which includes the full off-shell T-matrix for the Coulomb interaction between the protons. To leading order, the theory contains: two-body contact interactions whose renormalized strengths are set by the NN scattering lengths, the Coulomb potential, and a three-body contact interaction. We solve the three coupled integral equations with a sharp momentum cutoff, Lambda, and find that a three-body interaction is required in 3He at leading order, as in the triton. It also exhibits the same limit-cycle behavior as a function of Lambda, showing that the Efimov effect remains in the presence of the Coulomb interaction. We also obtain the difference between the strengths of the three-body forces in 3He and the triton.Comment: 18 pages, 6 figures; further discussion and references adde

    Capture rate and neutron helicity asymmetry for ordinary muon capture on hydrogen

    Full text link
    Applying heavy-baryon chiral perturbation theory to ordinary muon capture (OMC) on a proton, we calculate the capture rate and neutron helicity asymmetry up to next-to-next-to-leading order. For the singlet hyperfine state, we obtain the capture rate Gamma_0 = 695 sec^{-1} while, for the triplet hyperfine state, we obtain the capture rate Gamma_1 = 11.9 sec^{-1} and the neutron asymmetry alpha_1 = 0.93. If the existing formalism is used to relate these atomic capture rates to Gamma_{liq}, the OMC rate in liquid hydrogen, then Gamma_{liq} corresponding to our improved values of Gamma_0 and Gamma_1 is found to be significantly larger than the experimental value, primarily due to the updated larger value of g_A. We argue that this apparent difficulity may be correlated to the specious anomaly recently reported for mu^- + p to n + nu_mu + gamma, and we suggest a possibility to remove these two "problems" simply and simultaneously by reexamining the molecular physics input that underlies the conventional analysis of Gamma_{liq}.Comment: 14 pages, 1 figur

    Tilted-Cone Induced Cusps and Nonmonotonic Structures in Dynamical Polarization Function of Massless Dirac Fermions

    Full text link
    The polarization function of electrons with the tilted Dirac cone found in organic conductors is studied using the tilted Weyl equation. The dynamical property is explored based on the analytical treatment of the particle-hole excitation. It is shown that the polarization function as the function of both the frequency and the momentum exhibits cusps and nonmonotonic structures. The polarization function depends not only on the magnitude but also the direction of the external momentum. These properties are characteristic of the tilted Dirac cone, and are contrast to the isotropic case of grapheme. Further, the results are applied to calculate the optical conductivity, the plasma frequency and the screening of Coulomb interaction, which are also strongly influenced by the tilted cone.Comment: 28 pages, 12 figures, to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    The effect of pressure on statics, dynamics and stability of multielectron bubbles

    Full text link
    The effect of pressure and negative pressure on the modes of oscillation of a multi-electron bubble in liquid helium is calculated. Already at low pressures of the order of 10-100 mbar, these effects are found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review Letter

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure
    corecore