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ABSTRACT 

The backscatter from a rough surface is usually calculated 

by using Kirchhoff's approximation. In this report, the Kirch- 

hoff's approximation is extended to the backscatteding of an 

acoustic wave from a rough layer. 

the layer is assumed to have one-dimensional Gaussian distri- 

buted surface heights. 

The random rough interface of 

Gaussian and exponential autocorrelation functions are used 

to represent the correlation of the heights at two different 

points. Expressions for the variance of the scattering coefficient 

are derived in the case that the rough side is very rough. 

Experimental investigations were conducted at ultrasonic 
c 

frequencies on a target designed to have Gaussian distribution 

and correlation. The measured variance of the scattering coef- 

ficient p ,  D { p ) ,  has the Eol l swhg  prcperties! 

(A) D i p 1  is highly frequency dependent; it decreases as 

the frequency increases. 

(B) D i p )  decreases more rapidly than that obtained from a 

rough surf ace . 
The dependence of D { p I  on the incidence angle el is 

such that it increases as el increases, if el is small. 

The experimental results lie between the theoretical results 

(C) 

calculated for two kinds of correlation. 

measured value of the correlation function of the target. 

This agrees with the 
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I. INTRODUCTION 

The problem of t h e  r e f l e c t i o n  of an a c o u s t i c  plane wave from 

a p lane  i n t e r f a c e  s e p a r a t i n g  two i s o t r o p i c  media has been solved 

by many p h y s i c i s t s  and geo log i s t s .  Exact forms of the  genera ted  

waves a r e  given,  related t o  t h e  inc idence  ang le  and t h e  a c o u s t i c  

impedancsof  t h e  media. Brekhovskikh extended t h e  work t o  d e a l  

w i th  a l a y e r  having plane i n t e r f a c e s .  The n a t u r e  of wave scatter- 

ed by a l a y e r  w i t h  rough i n t e r f a c e ,  however, i s  g e n e r a l l y  unknown. 

The b a c k s c a t t e r i n g  of acous t i c  wave from a rough l a y e r  is  

analyzed i n  t h i s  r e p o r t .  The model of t h e  l a y e r  considered con- 

t a i n s  a smooth i n t e r f a c e  i n  f r o n t  and a random rough i n t e r f a c e  
' 

i n  back. The Kirchhoff ' s  approximation f o r  e v a l u a t i n g  t h e  scat- 

t e r i n g  f i e l d  of a rough su r face  (Beckmann 1963) i s  extended t o  

deal wi th  such a l aye r :  experimental  work has  a l s o  been done f o r  

t h i s  model a t  d i f f e r e n t  incidence ang le s  and f requencies .  

A t e n t a t i v e  try is also made on t h e  eva lua t ion  of back- 

scatter from a l a y e r  wi th  a very  rough s u r f a c e  i n  t h e  f r o n t .  

Equat ions are der ived  f o r  t h i s  l a y e r  wi th  no experimental  

support .  

Owing t o  t h e  ana logies  between a c o u s t i c  and electromag- 

n e t i c  waves, t h e  r e s u l t s  of t h i s  work can be d i r e c t l y  a p p l i e d  t o  

t h e  same problems i n  e lectromagnet ic  waves. The r a d a r  cross sec- 

t i o n  i s  obta ined  j u s t  by modifying t h e  var iance  of t h e  s c a t t e r i n g  

c o e f f i c i e n t  w i t h  a s c a l i n g  factor. Appl ica t ion  of t h e  r e s u l t s  

can be found i n  t h e  survey of l u n a r  s u r f a c e  and i n  g e o l o g i c a l  

exp lo ra t ions .  

-1- 
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11. EQUATIONS OF ACOUSTIC WAVE MOTION 

2.1 Stresses, strains, and elastic constants 

In an ideal isotropic homogeneous medium, a wave may propa- 

gate without any loss of amplitude due to internal friction. 

the medium is defomable and undergoes a change in configuration 

due to the application of forces, the body is said to be strained. 

(Redwood 1960, Ewing 1957). It is assumed that a point P ( X ,  y, 

z) is displaced, and the coordinates of the displacement are (u, 

v, w). An adjacent point Q(x+6x,y+6ylz+6z) is displaced by (u+ 

~u,v+~v,w+~w). By Taylor's theorem, neglecting the higher terms 

under the assumption of small perturbation, 

When 

au au au 
ax aY az u + 6u = u + - 6x + - 6y + - 6 2  I 

av 6 2  av 6x + - 6y + - av 
aY az v + 6 v = v + -  ax I 

aw 6z aw 6x + - 6y + - aw 
aY az w + 6 w = w + -  ax 

The analysis may be simplified by writing 

I 

-2- 
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t 

Then t h e  displacements  may be r e w r i t t e n  a s  

1 u+ 6 u=u+ (exx6 x + p x y  6 y + p x z  

v + 6 v = v + ( p  6x+e by++ 6 z ) + ( w  6y-wx6x) 

I 

1 1 
YX YY 2 Y= 3 I 

w + 6 w = w + ( p z x 6 x + p  1 1 6y+ezz6z) +(wX6y-w 6x) 
ZY Y 

r e p r e s e n t  s i m p l e  ex tens ions  of t h e  medium i n  t h e  eyy' 
v i c i n i t y  of P (x ,  y ,  z): 

0 r ep re -  Y' 2 
e r e p r e s e n t  t h e  s h e a r  s t r a i n s :  and w x I  w xy' yz '  ezx e 

s e n t  t h e  r o t a t i o n  of t h e  element as a r i g i d  body. 

To express  t h e  displacement  i n  v e c t o r  form 
+ -+ + + s = uxo + wzo + vyo I 

+ + + 
where xo , yo I and zo a r e  u n i t  v e c t o r s  i n  t h e  d i r e c t i o n s  of 

x-? y-? and 2- axes ,  r e spec t ive ly .  

For small per tu rba t ion ,  t h e  s h e a r  s t r a i n  is so smal l  t h a t  it 

Then t h e  cub ic  d i la ta -  has  no c o n t r i b u t i o n  t o  t h e  volume change. 

t i o n  A i s  de f ined  as 

= e  + e  + e z z  

= d i v  s I 

xx YY 

+ 

and t h e  r o t a t i o n a l  displacement  becomes 



+ 9 4 -B 
w = wxxo + W Y Y O  4- yo 

1 4 
= 2 c u r l  s 

To d i s c u s s  t h e  f o r c e  a c t i n g  on an element of volume i n  a 

medium, n ine  components of stress, which have t h e  u n i t s  of fo rce /  

area, are requ i r ed .  

t h e  f i r s t  s u b s c r i p t  i s  a s soc ia t ed  wi th  t h e  a x i s  normal t o  t h e  

p l ace  on which t h e  stress a c t s ,  and t h e  second s u b s c r i p t  t o  t h e  

d i r e c t i o n  of t h e  stress. 

there a r e  only  two e l a s t i c  cons t an t s ,  Lame's c o n s t a n t s  X and p) 

t o  r e l a t e  t h e  stress and s t r a i n  toge the r .  I n  t h e  case  of ideal  

f l u i d  and ideal  gas p = 0. The  stress and s t r a i n  r e l a t i o n s  by 

Lame a r e  as follows: 

L e t  t h e  stresses be dendted by T ~ , ,  where 

I n  an i s o t r o p i c  homogeneous medium, 

T xx = A  (exx+eyy+ezz ) -+plexx=XA+zuexx I 

T = + z y = p e y z = p e  
Y Z  ZY 

I 

From ( 2 . 7 ) ,  o t h e r  elastic cons t an t s  can be de r ived  a s  fo l lows ,  

(Lamb 1925):  
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(a). Uniform stress and dilatation, T ~ ~ = T ~ ~ = T ~ ~ ~  and 

2 k= ( A + J P )  is the compressibility. 

(b). Shear stress T as defined by Eq. (2.7) XY 

zx T T T X Y = y Z = -  
eZX P ' x e  e XY YZ 

is the coefficient of rigidity. 

(c) . Longitudinal stress, T yy= T 2=o I 

E is the Young's Modulus. 

(a). Poisson's ratio, u , represents the ratio of lateral 
contraction to longitudinal extension. In this case, 

x 
, and u = 2 m  = 0 , e = eZz = ae - ? - ?  YY 22 YY xx 

The constants A,  p ,  k can be expressed in terms of Young's 

Modulus and Poisson's Radio: 

uE A = Lame's constant = (l+u) (1-2a) 

p = Rigidity = , 

E 

? 

E 
TirTq 

k = Compressibility = 3(1-2a) 

2.2 The equationsof motion 

According to Newton's equation of motion, the x-component of 

the resultant force on the volume element is 
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4 

6z-rzx) 6x6y a %X * %x az I 
+ -  

where p is the density of the medium. 

geneous medium, Equation ( 2 . 7 )  holds, giving 

For an isotropic homo- 

Similar arguments apply to the y - ,  and 2- components, so that 

+ p,tz a2' = (X+2p) grad A - 2~ curl w (2.9) 

Equation (2.9) is the equation of motion in an isotropic medium. 

It is usually rewritten in the form of displacement potentials + 
and by the following transformations 

-* 

s = -  (grad 0 curl $) f (2.10) 

div $ = 0 
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Y 

Substituting (2.10) into (2.9) I 
e a L  * 

at 
P - ~  (grad 4*curl~)=(hu2~)grad(V~4) -pcurl (curlcurl;) , 

a2 2 
P - ~  (grad++curlG)=(hiZp)grad(v @)+pcurl(v2$) , 
at 

(2.11) 

2 where v2 denotes the Laplacian, defined by V 4 = Div. Grad 

for a scalar 4 ,  and V J, = Grad Div ;-curl curl G for a vector $. 
2+ -b 

In the Cartesian coordinate system, 

2 a2 a2 a2 
2 + -  + -  

ay2 az e 
2 v =- 

ax 

By taking the divergence and curl on Equation (2.11) the scalar 

and vector potentials can be separated: 

--• 2 2  2 - x + 2 p  2 

q = c p  a t 0 4  ' P 

q = c s v ; , c s  2 2  2 p  = - .  
2-t 

P at 

(2.12) 

(2.13) 

In Equation (2.11) and (2.121, the scalar displacement 

potential I$ travels with velocity C and involves no rotation; it 

is called "longitudinal", or "compressional", or "dilatational" 

or "irrotational", or "P-Wave" ; the vector displacement potential 

J, travels with velocity Cs and involves rotation; it is called 

"shear", or "transverse", or "lateral " , or "equivoluminal", or 
rotational", or "distortional", or 'IS-Wave" . The names Longi- 

tudinal and Shear waves shall be used throughout this report, 

.p 

+ 

\I 
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In ideal gases and fluids, the ordinary acoustic wave init- 

iates a wave motion in which the sign of dilatation changes very 

fast so that there is no time for sensible transfer of heatbe- 

tween adjacent portions of the medium. The flow of heat hardly 

sets in from one element to another before its direction is re- 

versed, and the conditions are practically adiabatic. Moreover, 

since p = 0 ,  no shear wave propagates in an ideal gas or fluid. 

The Lame's constant A for an ideal gas is found to be 

(2.14) x = K~~ = no 

Kad: adiabatic compressibility, 

A : (specific heat at constant volume)/ (specific 

heat at constant pressure) , 
Po : gas pressure. 

In an ideal fluid, A = Kad is usually influenced by many 

factors. 

by C1: = 

a is related to the longitudinal wave velocityCR 
, and an empirical equation giving CL in water is 

(2.15) CQ = 141,00094.21t-3.7t 2 +110B+0.018d, 

cR = longitudinal wave velocity (cm/sec), 

t = temperature (C) , 
s = salinity (1/1000 in weight), 

d I = depth (cm). 

2.3 General equation-;for damped waves 

The dissipative forces in acoustic wave motion are propor- 

tional to the velocity of the particles in the medium for small 

perturbations. The force of the elastic stress must both accel- 

erate the medium and overcome the dissipative forces, so the 

equations of .-motion) Equations (2.11) and (2.121, are modified 

(Kinsler and Frey 1950) as follows: 
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(2.16) 

(2.17) 

(mass (time Y’ where rl has the unit of (volume) 
The general solution of Equations (2.16) and (2.17) has the 

usual form E = Ae i(X*r-wt’, where r is the distance from certain 

reference point. Sibstituting into Equations (2.16) or (2.17), 

the propagation constant X is found to be 

where 

K = w/C is the wave number, 

a = q/2pC is the attenuation constant. 

For water at room temperature, the attQnuation constant is 

about one thousandth of the value of air. For this reason, 

ultrasonics are very well suited €or underwater signal transmis- 

sion as opposed to the case in air. 

waves transmission in viscous gas and liquid, the skin depth is 

found to be , where Cisthe shear viscosity. 

As for the possible shear 

These waves behave very much like electromagnetic waves 

penetrating a metal. 

5.6 x lO-’cm. 

neglected in gases and liquid. 

For water at 1 mc, the skin depth is only 

In most cases, shear wave propagation can be 



. 

3. REFLECTION OF PLANE WAVE FROM A PLANE INTERFACE 

. 3.1 Boundary conditions 

The continuity of normal and tangential components of dis- 

placements and stresses across the interface give the following 

boundary conditions (Brekhovskikh 1960) : 

(3 .1)  
+ + +  n x (sl-s2)=0 ; 

n . ( T ~ - T ~ ) = O  ; 

n x ( T ~ - T ~ ) = O  . 
Taking the z-axis as the normal to the plane, Equation 

+ + +  

+ + +  

(3.1) can be expressed in terms of displacement potentials I$ 

and 5 as, 

3.2 Reflection of waves at the interface of two isotropic and 

homogeneous media 

Let A, B, and D represent the amplitudes of the potentiat 

of incident, reflected, and transmitted waves, where the subscripts 

-10- 
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9 and s denoting longitudinal and shear wave (Fig. 1). Accord- 

ing to Buygen's principle, the phase velocities for  each brave 

are equal at the boundary, therefore, 

el = e; , Yl= t'; ( 3  . 2 )  

It is shown that the longitudinal or vertically polarized wave, 

$ yo , is always reflected and transmitted in the modes of 

longitudinal and vertically polarized shear waves (Brekhovskihh, 

1960). In other words, the vectjor displacements potentials in- 

volved can always be assumed to be in the direction of the 

y-axis and independent of y. The potentials in media ill and 12 

are assumed as follows: 

42'De exp [iKze (xsine2+zcose2) ] , 

The boundary conditions at z=O are 

( 3 . 3 )  



.' 

*z C \ *X 
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Upon substituting Equation ( 3 . 3 )  into Equations ( 3 . 4 )  8 (3 .5 )  8 

(3.6) and (3.7) 8 the boundary conditions are expressed in terms 

of potentials as follows: 

( A a - B t ) K l a c o s B 1 + ( A S + B , ) R l s s i n ~ ~ = D  K COS8 +D K sint2 8 (3.8) L 2L 2 s as 

(3.11) p2Da -7ine2-p2Dscos2f2 K2 . 
K2 s 

By setting % #  or AI equal to zero, corresponding to longitudinal 

or shear wave incidence, respectively, the amplitude of the 

generated waves can be expressed in terms of the amplitude of the 

the incident wave potential. It is to be noted that when the 

incident angle is small, all the sinusoidal term tends to the 

limits 1 and 0. Then the boundary condition is further simplified 

(3.12) 



-14- 

- ( A ~ - B ~ ) K ~ ~ = - D  s K 2s ; (3.13) 

-p l s s  (A +B )=-psDs . (3.15) 

Bs -P2c2s-PlCls DS zp2c2s , . - p1 
5 -  sc2 s+p lClS I As= p2c2s +P 1 c 1s p2 

(3.16) 

(3.17) 

Equations (3,161 and (3.17) imply that when the angle of 

incidence is small, no change of mode occurs at the interface 

of acoustic wave motion. This is a verycimportant limitation 

in the acoustic simulation problem. 

to be very small if change of mode is to be avoided in the 

experiment. 

The angle of incidence has 



4. THE GENERAL KIRCHHOFF SOLUTION FOR SCATTERING 
FROM ROUGH SURFACES 

4.1 General solution for surface with one dimensional roughness 

Beckmann (Beckmann, 1963) has derived the solution for the 

mean scattered field, power, and the statistical distribution of 

those quantities by the Kirchhoff approximation method. The 

principal limit of the approximation is that the surface must 

not contain a large amount of sharp edges, sharp points or other 

irregularities with small radii of curvature. The criterion for 

the validity of the approximation is given as 

4Krccos8>>A I 

where rc is the radius of curvature, 8 is the local angle of 

incidence, and A is the wavelength of the wave. 

The rough surface is given by the function 

with mean level coinciding with the plane 

The medium in the space z>€(x) is assumed to be isotropic in 

which a monochromatic plane longitudinal wave 

ik Or-iwt El=e 1 

is transmittea, where 

(4.3) 

(4.4) 

is the wave number of the incident wave, which is assumed to 

lie in the xz-plane (Fig. 21,  and 7 is the radius vector 
-P + + r = xxo+~(x)zo . 

-15- 

(4.5) 
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The angle of 

by e 2 ,  where 

it2 also lies 

incidence is denoted by 

the magnitude of k, and 
rc 

in 

el, the scattering angle 

kl aye equal: 

the xz-plane for a one-dimensional rough scat- 

tering Burface. 

In order to deal with plane scattered waves, the observa- 

tion point P is removed to the Fraunhofer zone of diffraction, 

R'+-, where R' is the distance from P to a point B(x,~(x)) on 

the rough surface (Fig. 2 ) .  In other words, 

- - b  
KZR'=K2Ro-Kt*r 8 ( 4 . 7 )  

where Ro is the distance of P from the origin. 

potential E2 at P is given by the Helmholtz integral 

The scattered 

-+ where 
iKR' . e iKRo-igZ Or 

P 
e # = R ' .  

RO 
aE 
all E and - are the potential and its normal derivative on the 

rough surface S. The values of those two quantities are approxi- 

mated in the Kirchhoff method by the value that would exist on the 

tangent plane at that point, i. e., 

(4 .lo) 

(4.11) 

n is the normal to the surface at the considered point B (Fig. 3) 

and R is the longitudinal wave reflection coefficient of a 

smooth plane. 
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Fl6. Z . SCATTERINO F'ROM A aOU6H SURFACE 

FI6.3.  LOCAL 4CATTERING 6&OfiETR'( 
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. 

Then 

8 = el-B = el-arc tan6lx) . (4.12) 

Substituting Equations ( 4 . 9 )  8 (4.10) 8 and (4.11) in (4 .81,  

(l+R)E1(-i K2 n)-iY(l-R)Elffl*n + ds 

+ 
ei(*l-*2).r- R(% -ft ) - ( i t  +it ) dS8 1 2  1 2  

or 

(4.13) 

where 
+ + k, = K(sinBlxo-cosB l o  z ) ,  

+ -+ 
= K (sin6 1-sin6 2) xo-K (c0s6~+cos6 2) zo 

= v x +vzio x o  

+ + if = K(sin6 +sin6Z)xo+K(cos62-cos61)zo 1. 

ds = secBdx, tqt\B-E’(x) . 
For a one dimensional rough surface extending from x=-L to L# 

Equation (4.13) may be rewritten in the scalar fQrIU. 
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where 

. a = (1-R) sinel+(l+R) sine2 , 

The scattering coefficient p is defined as 

E2 
E20 

0'- 

(4.15) 

(4.16) 

(4.17) 

Where E20 is the potential reflected in the direction of specu- 

lar direction (e2=el) by a smooth plane medium-air interface 

of the same dimension. In this case 

= 0 ,  6 = 6 4  = 0 ,  R = -1, e = e2 vX 1 

so that 

or 
- - ikeik%Lcosel . 

E20 "RO 

Hence, from Equations (4.14) I (4.171, and (4.181, 

( 4  . 18) 

(4 19) 

For a smooth surface, 

f L  

= 4Lcose, \ (1+R)cos~2-(l-R)cos~1 eivXXdx 
-L 

where 
sin VxL 

L 
. 

sine vxL = vx 
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As a special case, if R=-1, then P in Equation (4.20) becomes 

For a rough surface 

and b are constant; 

1 
= 4Lcos 

= sinc VxL . (4 . 21) 
with constant reflection coefficient R, a 

from Equation (4.19) , 
1 

+ +  
e 

L .+ + 

[-(b+aE) I elvordx- 
1 -L 

L + +  

-L 
2R+2Rcos (Ol+eZ) eiverdx-e (L) . 1 

x -  
~ L c o s ~ ~  C O S ~ ~ + C O S B ~  

The eecond termacounts for the edge effect tends to zero when 

L>>A. Thus, ignoring the edge effect, 

where 

(4.22) 

(4.23) l+cos (el+e2) 
F = -  Rsec = C O S ~ ~ + C O S ~ ~  I 

i f - $  = -[(sinel-sine2)x-(cosel+cose2)~(x)] 2n (4.24) 
x 

4.2 Rough surface as random process 

The surface height ( ( x )  is assumed to be a random variable 

assuming values z with a probability density w ( z ) ,  the mean 

value, denoted by angular bracket <>  , is 

<((XI> = 0 f (4.25) 

and the mean value of the integral for a stationary random 

surface $s 
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+ +  
.iv-rdx 

L 
= X(V,) eiv*dx . (4.26) 

OD 

x (vz )  = \ w(z) eivzzdz is the characteristic function associ- 
J -0 

ated with the distribution w ( z )  . From Equation (4.26) the mean 

scattering coefficient 

F 
< P >  = x(v,)sinc V,L . (4.27) 

The variance of the scattering coefficient D{p) corresponding 

to the mean of the normalized scattered power is defined as 

(4 . 28) 
The asterisk * denotes the complex conjugate, and from Equation 

(4.22) 

Denoting eivz (t1-42) by x2(vz-vz), then from Equation (4.281, 
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x2(vz,-vz) is the two-dimensional characteristic function 

of the distribution w( z1 , z 2 ) .  

assumed to have a Gaussian distribution , 

The random rough surface is 

( 4 . 3 0 )  

and the two-dimensional distribution is 

2 a 2 =  <z > is the variance of the rough surface, 

2 2  
C(T)= < '7 2 >  is the autocorrelation function of the rough 

< z  > 
surface, 

'c=x1-x2 is the separation factor between two points x1 

and x2. 

The autocorrelation function usually assumes the following two 

f oms : 
2 2  

(i). c(f)=e 'T IT , gaussian correlated, (4.32) 

(ii). c(T)=e-ITI/T exponentially correlated, (4 33) 

T is called the correlation distance, which is much less than 

L to assure a random surface. 

The one- and two-dimensional characteristic functions are 
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evaluated as below (Appendix) : 

dz ivzz 2 2  
-2 /2a e X(V,) = 

2na 
1 2 ' 2  - 20 vz = e  

where 
2 2  

g = a v z  5 

(4.34) 

(4.35) 

= exp -g(l-c(T)) . (4.36) 

From Equations (4.22), (4.26), (4.281, and (4.29), the variance 

of p is 

Using the relative coordinate T already defined as 

T'X'X 1 2 '  
and introducing the center-of-mass coordinate 

(4.38) 

(4 . 39) I = -(x +x ) xo 2 1 2  
the equation (4.37) can be rewritten as 



From Equations (4.34) and (4 .361,  D{p) can be expressed in terms 

of C(T) as 

(4.40) 

J -2L. 

Two kinds of correlation functions, Gaussian and exponential, 

are considered for gcalf and g>>l . 
(i) . Gaussian correlated surf ace, 

I (A) If gal, e gC(T)can be expanded by a uniformly 

convergent series. 

m m  
Dip I=& I-2L m=l m. 

2L 
F2 eivxt 2 SC(Z)"~ 

g -1 

2 
D{p)= r- 2L exp I-vx2T2/4] ; 

(4.41) 

(4.42) 

(4.43) 

03 2 2  
'f /T 

e ivx.re-g (1-e )dZ 2x4 
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Because g is much greater than unity, the integrand is neglible 

if T/T is not in the close vicinity of zero; the integral is 

therefore simplified as 

TF 2 m 2T2 = - -  
2L g 3 ( 4 . 4 4 )  

(ii) . Exponentially correlated surface: the same procedure 
in (i) can be followed. 

( 4 . 4 6 )  

( 4  . 4 7 )  

4 .3  Statistical distribution of the field 

The mean scattered field and power is shownin Equation 

( 4 . 2 ) ;  the probability distribution of those qtzantities can be 

found by looking at the random variable p .  From Equation 

(3 .22)  8 



j=1 

= re i$ . (4 48) 

A = -  is a constant, and $ is a random quantity. Beckmann 
L j 

has shown that for a very rough random surface (g>>l,<p>fo) 

with zero mean <p>=o,  the distribution of the resultant phase $ 

is uniform 

, -r<$<r, (4 . 49) 1 w($) = T;; 

and the distribution of the amplitude r is Rayleigh distributed 

The variance of p p *  is found to be 

2 = D {PI 

The standard deviation of P P *  

(4.51) 

= D i p )  (4.52) 

The normalized scattered power p p *  is found having its mean 

value and standard deviation equal to D{p) 

4.4 The effect of absorption in the medium 

The presence of absorption of the space in which the wave 
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is  t r a n s m i t t e d  has a g r e a t  in f luence  on t h e  mean s c a t t e r e d  

powers. The damped wave equat ion has  a gene ra l  s o l u t i o n  

+ +  
i k - r  ( l - i a / k )  - i w t  E = e  I 

which impl ies  a change i n  the  va lue  of Vx and V, of Equation 

( 4 . 1 3 )  . 
L e t  

VI = v, - 1- .d v K 2 '  

a 2  -2  2 2  /2a ei(v,-ij;.vz) dz 
X ( V i )  = - 

Hence, 
2 2  

x(v,)x*(v,) = e -g(.l-a /k ) . 

( 4 . 5 3 )  

( 4  . 5 4 )  

The two-dimensional c h a r a c t e r i s t i c  func t ion  x2Cvl , -v i ) i s  

igac/k -g (1-02/k2) (1-c) , ( 4  . 5 5 )  = e  .e 
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I-2L 

For a very rough surface (g>'1), C(T) is significant only for 

very small value of T/T, 

iga C/kdT I 
eivX .exp [-g(l-a 2 2  /k 1 (1-c)]e D{p) = 

or 

(4 . 56) 2 2  exp[-g (1-a /k ) (1-c)] d T  . ,ivx' 

- W  

From the analogy between (4.56) and (4.40) , the variance of p , 

(i). Gaussian correlated surface: 

(4 057) 1 Vx2T2 
exp [ - T F ~  lr 

2 2  4g ( 1-aZ/k2 2~ g(1-a /k 1 
D { p )  = - *  

(ii). Exponentially correlated surface: 

F2 g(1-d 2 2  /k ) . 
2 2  D{p) = 

g'(1-a2Jk 1 +vx2T2 
(4 . 58) 

Equations (4.17) , (4.57) , and (4.58) shows that the abosrption 

will reduce the value of <EE*> , and high-frequency wave causes 
more attenuation than a low-frequency wave. 

4.5 Limitations of the general Kirchhoff method applied to 

acoustic wave scatterinp 

The acoustic wave reflection coefficient is a function of 

the local angle of incidence, or alternatively, is a function of 
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R = R ( 8 )  = R(B1 - arctan’tx) . ( 4  . 1 2 )  

The approximations of gas0> and <b> in Equation ( 4 . 1 4 )  , which 
are always used for varying reflection coefficient case, are 

much more complicated in the acoustic wave scattering problems. 

Owing to the elastic property of the medium when el increases, 
the generated waves change mode from one to another and the 

reflection and transmission coefficients change very rapidly. 

If the rough surface is chosen to be a gently rolling surface 

(T>>u), the probability distributions of the slope ~(5’) are 

(i) . Gaussian correlated surf ace : 

(ii). exponentially correlated surface: 

( 4  . 5 9 )  

( 4  . 6 0 )  

~(6’) in Equations ( 4 . 5 9 )  and ( 4 . 6 0 )  imply a more dense distri- 

buiton in the neighborhood of zero slope. If is also chosen 

to be small angle, the value of R can be averaged over as 

For longitudinal wave incidence with Cll=’O, from Equations (3.17) 

and ( 3 . 1 6 ) ,  the reflection and transmission coefficients are 

defined as 

Reflection coefficient 

( e  ) = - f  22-21 R12 1 
Z?+Z, L I  

Transmission coefficient 
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( 4 . 6 4 )  

If the X2 medium is free space or air and the #1 medium is 

liquid or solid 

R(el) = 0 . (4 .65)  

Under the previous assumptions, a and b in Equation (4.14) are 

considered to be constant and the general Kirchhoff approximation 

can be applied to the acoustic wave problems. 



5. ACOUSTIC WAVE SCATTERING FROM LAYER 

5.1 Layer with rough interface in the back 

The evaluation of the scattering field from a very thick 

layer with roughness in the back is a direct extension of the 

scattering of a rough surface. Thickness d (Fig. 4 )  is assumed 

to be 

d > > L ,  

so that the smooth boundary of the layer is at the far field of 

the random rough boundary. The layer to be discussed is a layer 

without absorption, so that the wave can transmit in it with- 

out attenuation. The smooth interface has the following char- 

acteristics, at 2 = d: 

l ~ ~ l  = D~~ lEll I 

= D21 I 

(5.1) 

( 5 . 2 )  

where El, E2, E3, and E4 are shown in Fig. 4 ,  and D12, D21 are 

the transmission coefficients. 

1 222  D12 = - m z2+z1 I 

D21 = m 
z2+z1 

The rough surface in the back has the same statistical properties 

as before. Then, 
-31  - 
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.FIG. 4. SCATTEZING FEOM A LAY&K 
WITH ROUGH 5lDE 1i-I BACK 
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+ +  
El = e i k l  *r+ik3dsece 3 

I 

+ +  
E3 = D12e ik3*r+ik3dsec63 

? 

(5.4) 

(5.5) 

The mean scattered f i e l d  < E 4 >  a t  a d i s t a n c e  R1 from t h e  o r i g i n  i s  

+ik3dsece3 --e 

-g/2 F 
i k Le ikqr 1 

- s i n c  vxL, (5.6) 2L D 1 2  cos e3e 
R1 <E4> = 

where g and vx is related t o  k3 and 

+ + c3 = k3 ( s i n  6 x .  - cos e3 zo) 3 0  

27 
1 

2 n  c1 
" 1 2 7  k3 = Ig31 = - P = 

20 x c  (5.7) 

C s i n  e l  
s i n  e3 - - nI2 - - - 1 P  = 

2 P  
C 

mean scattered power 
2 2  k, L 

sin e 2  
s i n  e 4  is t h e  S n e l l ' s  r e f r a c t i o n  index.  The 

f o r  a very rough s u r f a c e  ( g > > l )  i s  

A f t e r  pas s ing  through t h e  smooth i n t e r f a c e ,  t h e  mean scattered 

f i e l d  and power, from Equations ( 5 . 2 ) ,  (5 .6 ) ,  and (5.81, are 

ik3Le ikRo+ik3d ( S P C ~ ~ + S P C ~ ~ )  
< E 2 >  = D D  COS^^*^* e-gsincvxL , 12 2 1  n (Ro+2dsec'B3) 

k3 2 2  L D 1 2 2 D 2 1 2 ~ ~ ~  2 6 2 vx2T2 

n (R0+2dsece3) 
~ . T F  exp [-  ] . (5 .10)  

2 2 2L 4 g  
<E E *> = 2 2  
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Since 

ikLeikROcos el - 
=RO 

E20 - I 

2 2  2 k L cos e. I 
2 2  <E20E20*> = I 

= Ro 

so that, for Ro > >  2dsece3 I 

<E2 > COS e 
< p >  = - = n D  \z 12 D 21 e i2k3dsec0 3( cosel 1 &-g/2sincvxL 

E20 
(5.11) 

Using Equation (4.37), the variance of p can be calculated for 

different statistical properties of the rough interface. 

(i) Gaussian correlated surface: 

cos 2 e31.TF2 /r vx2T2 

COS el 
- 2D 2D 2 [  2L J exp r -  , T I  g . D i p )  = "12 12 21 

(5.12) 

(ii). Exponentially correlated surface: 

(5.13) gT 
2 cos 0 

COS el g2+vx2T2 
2D 2D 2( D C p )  = n12 12 21 

For the back-scattering from a layer against air 

e2 = -e1 I e4 = -e3 I R = -1 I 

vx = k3(sine3-sine4) = 2n,=ksine3 = 2ksinel I 

vz = -k 3 (cine3+cose4) = 2nL2kcose3 = -2kJn12a-sinZ€Jl ,(5.14) 
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2 2  2 2  2 
g = v z u = 4k u (nlZ2-sin el) I 

11 n12 = -. 
c21 

The quantities in Equations (5.11)1 (5.12) and (5.13) show the 

backscattering from the rough surface in the back of the layer. 

The backscattered field from the smooth interface in the front 

of the layer is negligible except for the normal incidence case, 

which is equivalent to the reflection in the specular direction. 

If the pulsed signal is used to approximate a monochromatic plane 

wave, the backscattering from the front surface can be easily re- 

jected by adjusting the gate position in the experimental measure- 

ment. 

In the actual case, all layers are more or less absorptive. 

For a layer constructed with a material which has an attenuation 

factor czI < p >  and D ( p )  should be modified as follow: 

cose3 
D D e  i2n12kdsec83aeiy2/k3.( cos 8 ) x  "12 12 21 < p >  = 

2 . (5.15) F a --.exp[-2dasece3- q(1 -7 )  I sincvxL 2L 
k3 

( f ) .  Gaussian correlated surface: 
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( i f )  . Exponent ia l ly  correlated su r face :  

cose3 F2 g ( l - a  2 /k32)  
2 

g2(1-a2/k3 2 2  +vX2~’  

exp[-4adsee3] (5.17) 

2 2 2  The q u a n t i t y  a /k32 i s  usual ly  very  small, so t h a t  (1-a /k3 ) *l, 

b u t  exp[-4adsee31 is very impor tan t ,  it is  n e a r l y  u n i t y  a t  l o w  

f requency,  and decreases very f a s t  as frequency inc reases .  

For a layer wi th  a very  rough i n t e r f a c e  i n  t h e  back 

< p >  = 0 (5.18) 

It  is  observed t h a t  t h e  wave backscattered from an abso rp t ive  

l a y e r  wi th  rough side i n  t h e  back, t h e  a t t e n u a t i o n  by t h e  absorp- 

t i o n  i n c r e a s e s  as  frequency i n c r e a s e s .  A s i d e  from t h e  a t t e n u a t i o n  

lay t h e  l a y e r ,  t h e  wave backsca t te red  from t h e  rough side of t h e  

l a y e r  has t h e  same characteristics as from a rough s u r f a c e  o f  t h e  

same s t a t i s t i c a l  proper ty ,  except  f o r  a changing i n  magnitude. 

5 . 2  Layer wi th  rough i n t e r f a c e  i n  t h e  f r o n t  

The a c o u s t i c  wave passes  through t h e  rough i n t e r f a c e  i n t o  

t h e  l a y e r ,  and comes back through it a f t e r  be ing  r e f l e c t e d  by 

t h e  smooth i n t e r f a c e .  The mean scattered f i e l d  i s  n e g l i g i b l e  

i f  t h e  rough side is very  rough, b u t  t h e  mean scattered powerf, 

owing t o  t h e  complicated phase r e l a t i o n s h i p ,  i s  d i f f i c u l t  t o  

eva lua te .  A t e n t a t i v e  t r y  wi thout  exper imenta l  suppor t  i s  made 

here t o  look a t  some aspec ts  of t h e  n a t u r e  of  t h e  b a c k s c a t t e r i n g  

from such a layer. I f  it is proved t o  be s u c c e s s f u l ,  t h e  same 
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. 

method can be extended to the layer with both sides rough. 

As a first step, the field transmitted into the layer after 

the wave hits the rough front surface is found by considering the 

field at Q(Ffg. 51, 

where 
+ +  e ik3Ro-ik3*r 

Y =  
RO 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

From the boundary conditions of the acoustic wave reflection, 

for small incidence angle I 

kl(l-R)E1 = k DE 3 1  I 

p2 
p 1  

(l+R) = -D = mD (5.23) 

(5.24) 

Substituting Equations (5.23), (5.24) into (5.21) and (5.22) 

(Els = mDEl I 

+ +  (g) = ifADEIKl*r 
S 

(5.25) 

(5.26) 
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S u b s t i t u t i n g  Equat ions  (5.10) (5.25) I (5.26) i n t o  (5.19) I 

f f  

where 

+ + + 
n =-sinBxo + cos8z0 I 

+ + + kl = k(s ine lxo  - coselzl) I 

c3 = nk(sine3z0. - cose3d0) I 

-+ = w x + wzzo  x o  

d s  = secSdx I tanp = ~ ' ( x )  . 
so t h a t ,  

where 

(5.27) 

(5.28) 

b = -D(cosel + m cose3) 

For smooth i n t e r f a c e ,  5 = E ' =  0 ? 
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inkeinkRo beiWxXdx I 

-L 4nRo 
E3(Q)  = 

or  

D(cosO1 + m cose3)sincwxL . (5.30) inke  ink ROL 
E3(Q)  = - 

2nR0 

? 
1 
n For t h e  d i r e c t i o n  e 3  = a r c  s i n  ( -sinel ) 

E3(Q) = 0 I otherwise .  

For a rough i n t e r f a c e ,  - 

= -  inkeink%Dm 1-mn+ (m-n) cos (83-81) . 
4nRo cosel - n C O S ~ ~  I 

or  

J -L 

where I 

l-mn+ (m-n) cos ( e2-el) G = - - *  inkD 
2 n  cosel - n cose3 

J -L 

(5.32) 

I 

. (5.33) + - b  w * r  = K [ (sinel-n s ine3)  x- (cosel-n cos03) E 1  
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Equations (5.32) and (5.33) a r e  analogues of  t h e  equat ions  for 

sca t te r ing  from a rough su r face .  The mean f i e l d  and mean 

s c a t t e r e d  power can be w r i t t e n  down i n  s imi la r  form. 

h 
'Z inkRo 

<E > E e e sincwxL 
3 RO 

. 

2 2  I f  it is  a ve ry  rough i n t e r f a c e  (h = wz a >>1) I 

*E3> = 0 

and , 
(i) Gaussian 

<E3E3*> = 

(ii) Exponent ia l ly  c o r r e l a t e d  i n t e r f a c e :  

G2 hT 
h2+W2T2 

*E3E3*> = 
LRO 

. 

(5.34) 

(5.35) 

(5.36) 

Equat ions (5.32) t o  (5.36) , which are de r ived  under t h e  assump- 

t i o n  t h a t  t h e  inc idence  angle  t o  be ve ry  small ,  show t h e  pro- 

p e r t i e s  of t h e  t r ansmiss ion  through a ve ry  rough i n t e r f a c e .  The 

nex t  s t e p  i s  t o  f i n d  t h e  e f f e c t  of t h e  l a y e r ' s  second i n t e r f a c e ,  

t h u s  o b t a i n i n g  t h e  o v e r a l l  e f f e c t  of t h e  l a y e r  w i t h  rough s i d e  

i n  f r o n t .  This  l a y e r  i s  e s s e n t i a l l y  t h e  same a s  t h e  prev ious  one 

i n  section 5.1, except  it has been tu rned  over w i t h  rough s i d e  

f a c i n g  t h e  i n c i d e n t  wave ( F i g .  6 ) .  

lower p lane  i n t e r f a c e  a t  z = 0 and produces a r e f l e c t e d  f i e l d  E4 

i n  t h e  s p e c u l a r  d i r e c t i o n  only (see Fig.  6 ) .  

as  t h e  d i s t a n c e  from t h e  po in t  01 t o  t h e  p o i n t  of o b s e r v a t i o n  Q 

The f i e l d  E3 s t r i k e s  t h e  

I f  R1 i s  d e f i n e d  
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below t h e  rough i n t e r f a c e ,  then 

' -L l. 

and t h e  r e f l e c t e d  f i e l d  E4  is r e l a t e d  t o  E3 by t h e  fo l lowing  

boundary cond i t ion :  

Under t h i s  boundary cond i t ion ,  t h e  f i e l d  E4 i n c i d e n t  on t h e  rough 

s u r f a c e  from below i s  

me t r ansmi t t ed  f ie ld  E 2 ( P ) e 3  caused by t n e  incidence or 

(E41 z=[ can be de r ived  from Equation (5 .32) ,  h e r e  t h e  s u b s c r i p t  

g 3  deno tes  t h a t  t h e  f i e l d  E2(P)e is c o n t r i b u t e d  on ly  by t h e  com- > 
ponent of  E4 i n  t h e  d i r e c t i o n  of g4. Then, 

+ +  e ' R 2 3 ' 2  = l G 2  [[ e i ( w  1 r 1 +is 2 2 dxldx2 

( 5 . 3 8 )  

i 2 k 3 d ~ e c 0 3 ~ ~ i k Q  
E2 '3= 2R0 (d-E) sece3 

where 

inkLD12 1-mn+ (m-n) cos ( 0  - 0  ) 3 1  GI = - cosel - ncqse3 277 I 
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-b w1 = El - E, 
= k(sinel - n sine3)xo - k(cosel - n cos0 )z 3 0  

- k(n sine3 - sinel)30 + k(n cose3 - cosel)80 

w xe R 0 * wz2s0 ? 

+ + 
rl = xlxo * ~ ( x ~ ) 8 ~  ? 

-b -b r2 = x 2 0  x + ~ ( s + x ~ ) 2 ~  

(5.39) 

It should be noted here that zl and T2 are refered to origins O1 
and 02, respectively. And more-over, since the maximum value of 

[ ( X I  is much less then the thickness of the layer, so that, 

e i2k3dsece3 meikR, G1G2/L /=“:I ‘3 1 +; 2 mi! 2 ) dqldx2 
E Z ( P )  e3 = 2Rodsec0 OR23 ‘2 

( 5 . 4 0 )  

In the backscattering direction, e2 =-el , then 

inkLD12 1-mn+(m-p) cos ( e S - e l )  - GI - - 
2n coBB1-n cose 3 ? 

ikLDZl 1 - 4 (  1 1 1  - - ) C O S  ( 03+e1) 
mn m n  
cosel-n cose3 f 

G2 = - -7. 

-b + 8,. = K(sinB1-n sine3)xo-k(cosel-n  COS^^)^^ 

fi2 = k(sinel+n sine3)xo-k(cose1-n cose3) zo 

I 

. -b -b 

( 5 . 4 1 )  
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From Equations (5.40) and (5.41) the mean value of E 2 ( P ) e 3  can 

be foundf 
DOD COD 

+ +  
, (5.42 4 +w w ) 

+ 1 I ei(wl 1 2 2 dxldx2 

where EI in Equation (5.42) is the separation factor between El 

and E2 

s = (2d+E1+E2)tane3 . 

s = Zdtane3 . (5.43 

Hence, from Equation (5.42). 

*E2(P)  e3> - A*exp[-h(l+c(s)l 'sinc[kL(sinO1-n sine3) 1 

*sinc[kL(sinel+n sine3) I (5.44) 

where 

2 2  h = W Z u  

W, = -K(cosel-n coae3) . 
e ik3dsece3 .eikRo G1G2 

A m 2  URosece 3 ' * 2 3 ' z  

(5.45) 

From Equation (5.44), it is seen that if the front interface is 

very rough (h > >  l), 
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. ( 5 . 4 6 )  

The evaluation of <EZE2*> is very much involved, approxi- 

mations have to be used throughout the derivation. From equation 

( 5 . 4 0 )  I 

L L L L  
-c + +  .* + +  iwl' (r10r1)+iw20 (r2-r2)dx dx dx'dx' 

1 2 1 2  ( 5 . 4 7 )  (E2E2*Ie3= -.( 1 I /e 
-L-Lr-L-L 

where the subscripts 1 and 2 are referred to the origions O1 and 

02? respectively (see Fig. 6). *a  

The mean value of (E2E2*)e3 over the rough interface is 

-L-L-L-L 

I 

~eiwxl(x1"x;)'iw~t(x2' x2)dx 1 2 1  dx dx 'dx2I ( 5 . 4 8 )  

and from Mood ( Mood 1963 ) ,  the 4th order characteristic f h c -  

tion associated with W, is 
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where 
T1=xl-x; , and T ~ = x ~ - x ;  . ( 5 . 5 0 )  

For a Gaussian correlated random surface, 
2 2  

-T /T C(T) = e f 

and as seen from Equation (5.491, the 4th-order characteristic 

function X ~ ( S , T ~ , T ~ )  is equal to zero except when 

s<<T, T <<TI and r2<<T . 1 
In the case shown in Equation (5.51) 8 

x (s, Tl, T 2 ) =  e -h [2 ( Xl2+ T2 ) /T2] 

(5.51) 

(5.52) 

Introducing new coordinates, 

= '(x +x') , and y2 = z(x2+xi), 1 
y1 2 1 1  

and using Equation (5 .52)  for a very rough layer, Equation (5.48) 

2h 8h 
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or 

. exp “8h ? 
((E2Ei)B)=2L 2 AA** - +T 

h (5.53) 

where 
h=k 2 2  u (cose1-ncose3) 2 , 

(5.54) 
2 2 2 2  = 2K (sin el+n sin e3). 

Substituting Equation (5.54) into Equation (5.53) , 

2 2  2nT L AA* 
( @ p p 3 )  = ~~a 2 (cosel-ncose3) 

23 .e*p I-T (sin 2 el+” 2 2  sin e3)/40 2 (cose1-n.cose3) 

(5.55) 

In Equation (5.55) , < (E2E5) 03> is significant only when e l  

and O3 are very small angles, i. e., 

sinelael , cosel=l . 
sine3=e3 , cosO3=1 . (5.56) 

Then, the limit in the integration for  obtaining <E2E2> can 

be extended to infinity, so that 
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Rewriting Equation (5.55) , 
2 2 2  

R:3D12D21L (l+m) .k2.f expl-ep 2 2  / 4 ~ ~ ( 1 - n ) ~ ]  (5.57) 
<Ep: >= ’ 5 i 2 2 2  0 

256, ’ d Rom Il-nl 

Since E20E:O=*72 I and<E2).o, the variance of the scattering 
Ro 

coefficient p becomes 
<E2Ei> 

E20E:o 
D{p) = 

2 (5.58) ~ 2 3 ~ 1 2 ~ 2 1  (l+m4) x ‘7 T .exp -BIT 2 2  /4u 2 (1-n) 
od 256 nm Il-nl . 2 3: 

From Equations (5.461, (5.55) and (5.581, it is seen that the 

backscatter from a layer with rough side in front is much smaller 

than that from a layer with rough side in back. Moreover, the 

parameters of the media has more influence on the backscattered 

power as compared with the previous one in Section 5.1, and as 

the incidence angle el iqcreases, the backscattered power drop 
off very rapidly. 

5.3 Discussion of the derivation 

(A) Rough side in back: The fields.E3 and E4 in the layer have 

been assumed to be caused by a plane wave and the amplitudes are 

independent of the thickness “d” of the layer. If the thickness 

d is much larger then the illuminated length 2L, the amplitudes 

of E3 and E4 will depend on the value of d. From Equation (5 ,3 ) ,  

introducing the dispersion caused by the thickness of the layer, 

the value of E3 given by Equation (5.5) will be changed to 

E3 - LD12 (cos~l+mcose3). (5.5a) 
2nRl 
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A similar modification should be made on E4 and E2 also. 

results of these changes in Ea, E3, and E4 will modify Dip) of 

Equations (5-12) and (5-13) to the form 

The 

ni2D12Dil cos 2 e3 (cosel+mcosej) k L T F  4 3  2 T Vx2T2 
I 

2 COS 2 el d4 4g 
Dip)= 

32n4m 

(5 . 12a) 
(ii) exponentially correlated surface: 

gT (5.13a) 
n6 D6 D2 cos 2 e3(~s~+mcose3)4 k 4 3 2  L F 

M~~~ 2 cos2el a4 g 2 +VxT 2 2  . Dip)= 12 12 21 

( 8 )  Rough side in front: Under the same condition, Dip) 

in Equation (5.58) should also be modified to the form 

2 2  2 2 2 2 D2 D2 4 
Dip)=" R23 12 21 .TL2.exp[-8,T /4a (1-n) 1. (5.58a) 

4 256n3m2Il-nl ad 

D i p !  in Equations !5.12a), (5.13a) and (5.58a) are derived 

under the condition that the layer is very thick. However, in 

most cases, d is not so much larger than the illuminated length, 

and the Equations (5.12), (5.131, and (5.58) give us a good 

estimate on the value of D{p). 



6. EXPERIMENTAL WORK 

6.1 Experimental set-tap and procedure 

The experimental measurement of the variance of the scatter- 

ing coefficient has been done in the Underwater Acoustic Labora- 

tory, Electrical Engineering Department, Kansas State University. 

Details of the equipment can be found in the report by Toliver 

(To,liver 1965). 

shown in Fig. 7. 

The block diagram of the experimental set-up is 

In the experiment, pulsed signals generated by the pulsed 

oscillator are sent out and collected by one pair of transducers 

in the water tank. For each single pulse sent out, the received 

signal will contain a train of pulses. 

is synchronized by the delayed trigger output from the pulsed 

oscillator, is used to select the portion of the pulse train for 

feeding into the detector and boxcar circuit. The boxcar cir- 

cuit has the function of converting the discrete pulse i n t o  ar, 

analog signal so that it can be recorded by the graphic level 

recorder e 

A gating circuit, which 

The distance S from the transducers to the front side of the 

target is determined by 

S = Dcosel (6 e 1) 

where el = Oo, 5O, and loo, and D is the distance travelled by 

the radiated signal before it hits the target. It is desired 

to have D as large as possible so that the illuminated area will 

be much larger than the correlation distance of the random 

interface. The choice of 32 inches 1s made to give an average 

-51- 
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v a l u e  of  L = 0.75  inches  for d i f f e r e n t  p a i r s  of t r ansduce r s .  The 

p u l s e  r ecu r rence  frequency,  PRF, i s  also determined by D. I t  

i s  selected t o  be t h e  largest va lue  wi thout  caus ing  any overlapp-  

i n g  of t h e  f i r s t  few r e t u r n s  wi th  t h e  fo l lowing  p u l s e  s e n t  o u t  

from the  t r a n s m i t t e r .  And t h e  p u l s e  l e n g t h ,  which should be as 

larger as p o s s i b l e  t o  s imula t e  a monochromatic wave, i s  l imi t ed  

by t h e  t h i c k n e s s  of t h e  l a y e r .  The p u l s e  l e n g t h  must be less 

than  the  t i m e  t h a t  is  necessary f o r  t h e  wave t o  make a round t r i p  

i n  t h e  l a y e r .  

model target cons t ruc t ed  and t h e  d i s t a n c e  D s p e c i f i e d  is as 

follows: 

A s a f e t y  choice of PRF and p u l s e  l e n g t h  f o r  t h e  

p u l s e  l e n g t h  0- 20 #set, 

PRF = 250 pps. 

The o p e r a t i n g  f r e q u e n c i e s  are chosen t o  be 

0 .72 ,  1.0 ,  1 . 2 8 ,  1 . 6 ,  1 .9 ,  2-25,  3 .0 ,  and 3.5 m c .  

Before t h e  measurements of  Dip) s t a r t ,  t h e  fo l l iwng  pro- 

cedures  are conducted a t  e l  = O * ,  S = D = 32 inches ,  f = 1 m c .  

(a)  The t a r g e t  suspension i s  c a r e f u l l y  checked by t h e  

r e t u r n e d  p u l s e  p o s i t i o n  on CRO t o  make s u r e  t h a t  D 

i s  equa l  t o  3 2  inches  f o r  a l l  p o s s i b l e  p o s i t i o n s  of 

t r ansduce r s .  

Transducers  focus ing  i s  done by a d j u s t i n g  t h e  mount- 

i n g  of t r ansduce r s  fo r  maximum r e t u r n  from a smooth 

p l ane  ta rge t  32 inches  apart .  

(b) 

A f t e r  checking on t h e  mounting of t a r g e t  and t r a n s d u c e r s ,  

measurements proceed as  follows: 

(c) S e t t i n g  t h e  ope ra t ing  frequency w i t h  t h e  h e l p  of test  

osc i l la tor  and CRO. 
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(d) The pulse length and PRF is set at pulse length = 20usec. 

8 

PRF = 250 pps. 

(e) The RF output level and the transducer compensator is 

adjusted to yield the best possible undistorted pulse. 

Procedures (c) , (d) , and (e) are conducted iteratively to 
fit all the figures required. 

(f) Measurement IE201 : the water-air interface is used 

as target, because it acts as perfect reflector; and 

D = 32 inches, = Oo are carefully checked. Then 

the magnitude recorded by the recorder gives 

= Kp3IE201 (6.2) 

where A is the magnitude of the output pulse, B is the 

gain of the transducers, and K1 is the overall gain of 

receiver and recorder. 

(9) Varying to the desired angle (Oo, 5O, loo) and 

setting S according to the relation shclwrr in Equation 

(6.1) , then I E21 , which is a function of the horizontal 
position of the transducers, is measured by scanning 

the transducers through the target. The gate is ad- 

justed in the way that only the return from the back 

side of the layer is detected and recorded. The sample 

magnitude of a point on the recording sheet gives 

where K2 is the overall gain in this measurement. 

ratio of K2 to K1 can be read from the settings. 

Since < p > = O ,  so that the variance of the scattering coef- 

The 

f icient is 
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. 

. 

or 

where Kdb = (K&) in db is the ratio of the overall receiver 
\ 

gain between the measurement of \ E 2 \  and \ E Z O \ .  

be paid not to overdrive any stage in the steps (f) and (9). 

Attention must 

K2 is adjusted to give the maximum possible recording without 

causing saturation in any one of the amplifiers and in the 

recording devices. I 
6 . 2  Description of layer target 

The target is a block of Plexiglas with a one-dimensional 

roughness on one side. (Fig. 8). The length of the Plexiglas 

is limitea by the dimension of the water tank; the width is equal I 
to 6 inches, which is much greater then the illuminated area of I 

any pairs of transducers; and the thickness, which should be as I 
thick as possible, is limtied to 2 inches by the material avail- 

~ 

able at the time of construction. 

face on the layer is desired to have a Gaussian probability 

The profile of the rough sur- 

distribution in height with standard deviation u = 0.05 inches, l 
and to have a gaussian autocorrelation with respect to the 

~ 

horizontal position, where the correlation distance is T - 0.15 I 
inches. The profile is calculated by trial and error with the 

~ 

help of an IBM 1620 computer. It i s  noted that the heights be- l 
tween -30. and +3u were considered in the calculation, and the I 
sample heights obtained from the truncated normal distribution I 
are so arranged that there is no sudden or periodical variations. 
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The profile obtained was then cut by a shaping machine. A sample 

measurement at intervals of 0.05 inches was then made on the 

finished target and the distribution and correlation functions 

were calqulated. 

The measured standard deviation and correlation distance are 

0.0465 inches and 0.15 inches, respectively. Moreover, the 

measured correlation function lies between Gaussian and exponent- 

ial, and consists of certain periodical variation when the 

separation factor is greater than the correlation distance T. 

Moreover, the distribution of slope is found to be different 

from normal and to have a pair of extra peaks at F'-tan(1O0). 

This might be caused by the shape of the cutter of the shaping 

machine . 
6.3 Measurement and results 

The quantity M1 of Equation (6.1), owing to the drift in 

the electronic circuit and the disturbance in water tank, is 

usually a function of time. After the disturbance in the water 

has died away, the fluctuation of M1 with time is nearly zero. 
2 The quantity M2 is a varying positive quantity, the mean of M2 is 

and M2i denotes the ith sample of M2. The variance of p p *  is 

as follows 

where 
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The samples {MZi) are taken at equal intervals from the recording 

sheet. Since part of target is not seen at bigger el, the number 

of samples taken is equal to 96, 90, and 84, f o r  el = O", So, and 

l o o  respectively. D{p I calculated from the experimental data is 

shown in Fig. 9. As a comparison, the value Dip) for backscat- 

tering from a rough surface is also obtained and shown in Fig. 10. 

6.4 Discussion of results 

To compare the experimental results with the theoretical 

solution of the backscattering from layer, D E p I  is calculated for 

el = Oo, So, and l o o ,  from Equations (5.12) and (5.13). 

The parameters of water, air and Plexiglas are 

(A) . Water: 

pW = 1. o gm/cml, 

cW 
9 = 15 x 10 cm/sec, 

4 = PWC" = 15 x 10 gm/cm'-sec . 2 W 

[ I l l .  Air: 
-3 

= 1.29~10 gm/cm: 'a 
4 = 3.4 x 10 cm/sec, 

= 0.0041 x 10 gm/cm'-sec. 
'a 

'a 
4 

(C) . Plexiglas: 
3 

p = 1.2 gm/cm, 
4 c = 27 ,8  x 10 cm/sec 
4 z 

P 

P 

P = 33.4 x 10 gm/cm'-sec. 

The reflection and transmission coefficients at the plane 

boundary of two isotropic medium as given by Equation (5.4) are 

calculated for the following cases 
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22 P 
= 2 x 2 = 1.15, 

P D12 2 +z P 
P W  

5 = 0.744 - - 2zw 
pW D21 2 +2 ' P  w 

Za-Z 
i -1 . - 

R22 - za+zp P 
Other parameters are given as follows 

n12 - - - cw = 0.54 . 
CP 

The effective illuminated area represented by L is a rather 

complicated quantity, it is assumed here to be equal to the 

illuminated area by one pair of beam-limited transducers; mean 

. 
value is taken for five pairs of different transducers. 

L = 0.75 inch,. 

The theoretical solutions Equation (5.12), and (5.13) are 

calculated and shown in Fig. ll(a) , ll(b) , ll(c) . The experi- 

mental results are also shown in these figures. 

The relations among frequency, wavelength, and ratio u/A 

related to Plexiglas are calculated and tabulated below: 

Frequency (mc) x (mm) Ratio u/X(6=1.18 m) 

0.72 
1.00 
1.28 
1.60 
1.90 
2.25 
3.00 
3.5 

3.86 
2.78 
2.17 
1.74 
1.465 
1.235 
0.927 
0 . 794 

0.306 
0.425 
0.544 
0 . 679 
0.806 
0.955 
1.27 
1.49 

From Fig. lla, llb, llc, it is seen that the measurements of 

DCp) deviate considerably from the theoretical solutions from a 

layer having either gaussian or exponential correlated rough inter- 
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face. 

factor a in the layer. If a is a non-decreasing function of 

frequency, the Equations (5.12) and (5.13) should be modified to 

the form of Equations (5.161, and (5.17). The modified results 

are such that D { p I  is reduced at low frequencies and decreases 

faster as frequency increases. For such a choice of a ,  the 

experimental results are then expected to lie between the modi- 

fied theoretical solutions. 

that the correlation of the thickness lies between e 'T IT 
e I ' I/T, the experimental work proves that Equations (5.16) and 

(5.17) are a good prediction of the backscattering of an acoustic 

wave from a layer with the rough side in the back. 

This can be explained by the existence of an attenuation 

Since the target constructed is such 
2 2  

and 
- 
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7. CONCLUSIONS 

The backscattering from a layer depends on the thickness, 

acoustic impedance, and the statistical parameters of the rough 

side. It also depends on the angle of incidence and operating 

frequency. The thickness of the layer enables the separation 

of the second pulse from the first one. In case of an absorp- 

tive layer, the wave propagated through the layer is attenuated. 

The attenuation may strengthen the frequency dependence of D { p ) ,  

if the attenuation factor a is a function of frequency. 

DCP) obtained from a layer with rough surface in the back 

has substantially the same form as that f a a  rough surface, 

on the condition that the layer is constructed with non-absorp- 

tive material. If the random side is very rough, the value 

of D { p )  decreases very fast as the ratio a/A increases where u 

is the standard deviation of the rough interface; and for small 

angle of incidence, D{p) increases as a/A increases. 

If the layer is turned over with rough side facing the 

incident wave, the evaluation of D { p )  involves an integral which 

contains a four-dimensional characteristic function associated 

with wz. 

evaluating the integral. The theoretical solution for this 

model has a very strong dependence on the thickness d, even if 

the layer is non-absorptive. 

Approximation is made by assuming €I3 very small in 
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APPENDIX: EVALUATION OF INTEGRALS 

The integration of the improper integrals 

2 2  -x /2a cosbxdx, and 

' 0  

-x 2 2  /2a .i(b-ic)xdx 

I-= 
involves contour integration. Choose the contour as shown 

= o  . 

R * =  
a2b 

f 0, 
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or 

2 2  
ea b /2)  2 2  

-x /2a cosbxdx = f i a e  

Since 

a 2 * 2 2  
-x fza oeibxdx = -x /2a cosbxdx -x /2a sinbxdx 

- 2 2  
-x /2a cosbxdx+0 

I 

So that  

And a l s o  

2 2  ib(x-a2c) a c a x-a c 

J -a 2 2 
.e ia bcd(x-a c) 

= m . e  i a  2 bc .exp [-;(b 2 2 2  -C ( 3 )  
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