135 research outputs found

    Estratégia reprodutiva do maracujá amarelo (Passiflora edulis Sims F. flavicarpa Deg) em área irrigada do Vale do Submédio São Francisco.

    Get PDF
    O objetivo deste trabalho foi verificar a estratégia reprodutiva de P. edulis, em cultivo irrigado no projeto Maniçoba, em JuazeiroBA

    Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3)

    Get PDF
    The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni2+ (Ni2+-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO42− ions could restore hydrogen production to BL21(DE3); however, to only 25–30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO42− were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO42− and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis

    Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation

    Get PDF
    Ablation of persistent atrial fibrillation (persAF) targeting complex fractionated atrial electrograms (CFAEs) detected by automated algorithms has produced conflicting outcomes in previous electrophysiological studies. We hypothesize that the differences in these algorithms could lead to discordant CFAE classifications by the available mapping systems, giving rise to potential disparities in CFAE-guided ablation. This study reports the results of a head-to-head comparison of CFAE detection performed by NavX (St. Jude Medical) versus CARTO (Biosense Webster) on the same bipolar electrogram data (797 electrograms) from 18 persAF patients. We propose revised thresholds for both primary and complementary indices to minimize the differences in CFAE classification performed by either system. Using the default thresholds [NavX: CFEMean ≤ 120 ms; CARTO: ICL ≥ 7], NavX classified 70 % of the electrograms as CFAEs, while CARTO detected 36 % (Cohen’s kappa κ ≈ 0.3, P < 0.0001). Using revised thresholds found using receiver operating characteristic curves [NavX: CFE-Mean ≤ 84 ms, CFE-SD ≤ 47 ms; CARTO: ICL ≥ 4, ACI ≤ 82 ms, SCI ≤ 58 ms], NavX classified 45 %, while CARTO detected 42 % (κ ≈ 0.5, P < 0.0001). Our results show that CFAE target identification is dependent on the system and thresholds used by the electrophysiological study. The thresholds found in this work counterbalance the differences in automated CFAE classification performed by each system. This could facilitate comparisons of CFAE ablation outcomes guided by either NavX or CARTO in future works
    corecore