253,471 research outputs found

    Convergence of the Poincare Constant

    Full text link
    The Poincare constant R(Y) of a random variable Y relates the L2 norm of a function g and its derivative g'. Since R(Y) - Var(Y) is positive, with equality if and only if Y is normal, it can be seen as a distance from the normal distribution. In this paper we establish a best possible rate of convergence of this distance in the Central Limit Theorem. Furthermore, we show that R(Y) is finite for discrete mixtures of normals, allowing us to add rates to the proof of the Central Limit Theorem in the sense of relative entropy.Comment: 11 page

    Molecular Dynamics Study of Orientational Cooperativity in Water

    Get PDF
    Recent experiments on liquid water show collective dipole orientation fluctuations dramatically slower then expected (with relaxation time >> 50 ns) [D. P. Shelton, Phys. Rev. B {\bf 72}, 020201(R) (2005)]. Molecular dynamics simulations of SPC/E water show large vortex-like structure of dipole field at ambient conditions surviving over 300 ps [J. Higo at al. PNAS, {\bf 98} 5961 (2001)]. Both results disagree with previous results on water dipoles in similar conditions, for which autocorrelation times are a few ps. Motivated by these recent results, we study the water dipole reorientation using molecular dynamics simulations in bulk SPC/E water for temperatures ranging from ambient 300 K down to the deep supercooled region of the phase diagram at 210 K. First, we calculate the dipole autocorrelation function and find that our simulations are well-described by a stretched exponential decay, from which we calculate the {\it orientational autocorrelation time} τa\tau_{a}. Second, we define a second characteristic time, namely the time required for the randomization of molecular dipole orientation, the {\it self-dipole randomization time} τr\tau_{r}, which is an upper limit on τa\tau_{a}; we find that τr≈5τa\tau_{r}\approx 5 \tau_{a}. Third, to check if there are correlated domains of dipoles in water which have large relaxation times compared to the individual dipoles, we calculate the randomization time τbox\tau_{\rm box} of the site-dipole field, the net dipole moment formed by a set of molecules belonging to a box of edge LboxL_{\rm box}. We find that the {\it site-dipole randomization time} τbox≈2.5τa\tau_{\rm box}\approx 2.5 \tau_{a} for Lbox≈3L_{\rm box}\approx 3\AA, i.e. it is shorter than the same quantity calculated for the self-dipole. Finally, we find that the orientational correlation length is short even at low TT.Comment: 25 Pages, 10 figure

    The generalized KP hierarchy

    Full text link
    We propose one possible generalization of the KP hierarchy, which possesses multi bi--hamiltonian structures, and can be viewed as several KP hierarchies coupled together.Comment: 12

    The short-time critical behaviour of the Ginzburg-Landau model with long-range interaction

    Full text link
    The renormalisation group approach is applied to the study of the short-time critical behaviour of the dd-dimensional Ginzburg-Landau model with long-range interaction of the form pσsps−pp^{\sigma} s_{p}s_{-p} in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents θ′\theta^{\prime} and θ\theta of the order parameter and the response function respectively, are calculated to the second order in ϵ=2σ−d\epsilon=2\sigma-d.Comment: 18 pages, 4 figures, 1 tabl
    • …
    corecore