3,072 research outputs found

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Carbon dioxide and fruit odor transduction in Drosophila olfactory neurons. What controls their dynamic properties?

    Get PDF
    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor

    Virtual Machines Performance Modeling with Support Vector Regressions

    Get PDF
    Virtualization is a key technology in cloudcomputing to render on-demand provisioning of virtual services.Xen, an open source paravirtualized virtual machine monitor(hypervisor), has been adopted by many leading data centersof the world today. A scheduler in Xen handles CPU resourcessharing among virtual machines hosted on the same physicalsystem. This study is focused on a scheduler in the currentXen release - the Credit scheduler. Credit uses two parameters(weight and cap) to fine tune CPU resources sharing. Previousstudies have shown that these two parameters can impact variousperformance measures of virtual machines hosted on Xen. In thisstudy, we present a holistic procedure to establish performancemodels of virtual machines. Empirical data of two commonly usedmeasures, namely calculation power and network throughput,were collected by simulations under various settings of weightand cap. We then employed a powerful machine learning tool(multi-kernel support vector regression) to learn performancemodels from the empirical data. These models were evaluatedsatisfactorily by using established procedures in machinelearning

    Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caffeine, a nonselective adenosine A<sub>1 </sub>and A<sub>2A </sub>receptor antagonist, is the most widely used psychoactive substance in the world. Evidence demonstrates that caffeine and selective adenosine A<sub>2A </sub>antagonists interact with the neuronal systems involved in drug reinforcement, locomotor sensitization, and therapeutic effect in Parkinson's disease (PD). Evidence also indicates that low doses of caffeine and a selective adenosine A<sub>2A </sub>antagonist SCH58261 elicit locomotor stimulation whereas high doses of these drugs exert locomotor inhibition. Since these behavioral and therapeutic effects are mediated by the mesolimbic and nigrostriatal dopaminergic pathways which project to the striatum, we hypothesize that low doses of caffeine and SCH58261 may modulate the functions of dopaminergic neurons in the striatum.</p> <p>Methods</p> <p>In this study, we evaluated the neuroadaptations in the striatum by using reverse-phase high performance liquid chromatography (HPLC) to quantitate the concentrations of striatal dopamine and its metabolites, dihydroxylphenylacetic acid (DOPAC) and homovanilic acid (HVA), and using immunoblotting to measure the level of phosphorylation of tyrosine hydroxylase (TH) at Ser31, following chronic caffeine and SCH58261 sensitization in mice. Moreover, to validate further that the behavior sensitization of caffeine is through antagonism at the adenosine A<sub>2A </sub>receptor, we also evaluate whether chronic pretreatment with a selective adenosine A<sub>2A </sub>antagonist SCH58261 or a selective adenosine A<sub>1 </sub>antagonist DPCPX can sensitize the locomotor stimulating effects of caffeine.</p> <p>Results</p> <p>Chronic treatments with low dose caffeine (10 mg/kg) or SCH58261 (2 mg/kg) increased the concentrations of dopamine, DOPAC and HVA, concomitant with increased TH phosphorylation at Ser31 and consequently enhanced TH activity in the striatal tissues in both caffeine- and SCH58261-sensitized mice. In addition, chronic caffeine or SCH58261 administration induced locomotor sensitization, and locomotor cross-sensitization to caffeine was observed following chronic treatment of mice with SCH58261 but not with DPCPX.</p> <p>Conclusions</p> <p>Our study demonstrated that low dosages of caffeine and a selective adenosine A<sub>2A </sub>antagonist SCH58261 elicited locomotor sensitization and cross-sensitization, which were associated with elevated dopamine concentration and TH phosphorylation at Ser31 in the striatum. Blockade of adenosine A<sub>2A </sub>receptor may play an important role in the striatal neuroadaptations observed in the caffeine-sensitized and SCH58261-sensitized mice.</p

    Tau Polarizations in the Three-body Slepton Decays with Stau as the NLSP

    Get PDF
    In the gauge-mediated supersymmetry breaking models with scalar tau as the next-to-lightest supersymmetric particle, a scalar lepton may decay dominantly into its superpartner, tau lepton, and the lightest scalar tau particle. We give detailed formulas for the three-body decay amplitudes and the polarization asymmetry of the outgoing tau lepton . We find that the tau polarizations are sensitive to the model parameters such as the stau mixing angle, the neutralino to slepton mass ratio and the neutralino mixing effect.Comment: 13 pages, 5 figures, RevTe

    The interplay between apparent viscosity and wettability in nanoconfined water

    Get PDF
    Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface. The same effect is observed in the energy dissipated by a tip vibrating in water perpendicularly to a surface. Comparison of the experimental data with the model shows that interfacial viscous forces and compressive dissipation in nanoconfined water can decrease up to two orders of magnitude due to slippage. These results offer a new understanding of interfacial fluids, which can be used to control flow at the nanoscale

    Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction

    Full text link
    Time series anomaly detection is challenging due to the complexity and variety of patterns that can occur. One major difficulty arises from modeling time-dependent relationships to find contextual anomalies while maintaining detection accuracy for point anomalies. In this paper, we propose a framework for unsupervised time series anomaly detection that utilizes point-based and sequence-based reconstruction models. The point-based model attempts to quantify point anomalies, and the sequence-based model attempts to quantify both point and contextual anomalies. Under the formulation that the observed time point is a two-stage deviated value from a nominal time point, we introduce a nominality score calculated from the ratio of a combined value of the reconstruction errors. We derive an induced anomaly score by further integrating the nominality score and anomaly score, then theoretically prove the superiority of the induced anomaly score over the original anomaly score under certain conditions. Extensive studies conducted on several public datasets show that the proposed framework outperforms most state-of-the-art baselines for time series anomaly detection.Comment: NeurIPS 2023 (https://neurips.cc/virtual/2023/poster/70582

    Supersymmetry Reach of Tevatron Upgrades: The Large tanβ\tan\beta Case

    Full text link
    The Yukawa couplings of the tau lepton and the bottom quark become comparable to, or even exceed, electroweak gauge couplings for large values of the SUSY parameter tanβ\tan\beta. As a result, the lightest tau slepton \ttau_1 and bottom squark \tb_1 can be significantly lighter than corresponding sleptons and squarks of the first two generations. Gluino, chargino and neutralino decays to third generation particles are significantly enhanced when tanβ\tan\beta is large. This affects projections for collider experiment reach for supersymmetric particles. In this paper, we evaluate the reach of the Fermilab Tevatron ppˉp\bar p collider for supersymmetric signals in the framework of the mSUGRA model. We find that the reach via signatures with multiple isolated leptons (ee and μ\mu) is considerably reduced. For very large tanβ\tan\beta, the greatest reach is attained in the multi-jet+\eslt signature. Some significant extra regions may be probed by requiring the presence of an identified bb-jet in jets+\eslt events, or by requiring one of the identified leptons in clean trilepton events to actually be a hadronic 1 or 3 charged prong tau. In an appendix, we present formulae for chargino, neutralino and gluino three body decays which are valid at large tanβ\tan\beta.Comment: 31 page Revtex file including 10 PS figure

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider

    Full text link
    We study direct production of charginos and neutralinos at the CERN Large Hadron Collider. We simulate all channels of chargino and neutralino production using ISAJET 7.07. The best mode for observing such processes appears to be pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and background levels, and suggest cuts to optimize the signal. The trilepton mode should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling the signal. In the first case, the leptonic branching fraction for ZZ decay is small and additional background from WZWZ is present, while in the second case, the trilepton signal is essentially absent. For smaller values of mtgm_{\tg}, the trilepton signal should be visible above background, especially if μmtg|\mu|\simeq m_{\tg} and m_{\tell}\ll m_{\tq}, in which case the leptonic decays of \tz_2 are enhanced. Distributions in dilepton mass m(ˉ)m(\ell\bar{\ell}) can yield direct information on neutralino masses due to the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may lead to an additional constraint amongst the chargino and neutralino masses are also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX) plus 7 uuencoded figures attache
    corecore