61 research outputs found

    Bose Condensation and the BTZ Black Hole

    Full text link
    Although all popular approaches to quantum gravity are able to recover the Bekenstein-Hawking entropy-area law in the thermodynamic limit, there are significant differences in their descriptions of the microstates and in the application of statistics. Therefore they can have significantly different phenomenological implications. For example, requiring indistinguishability of the elementary degrees of freedom should lead to changes in the black hole's radiative porperties away from the thermodynamic limit and at low temperatures. We demonstrate this for the Ba\~nados-Teitelboim-Zanelli (BTZ) black hole. The energy eigenstates and statistical entropy in the thermodynamic limit of the BTZ black hole were obtained earlier by us via symmetry reduced canonical quantum gravity. In that model the BTZ black hole behaves as a system of Bosonic mass shells moving in a one dimensional harmonic trap. Bose condensation does not occur in the thermodynamic limit but this system possesses a finite critical temperature, TcT_c, and exhibits a large condensate fraction below TcT_c when the number of shells is finite.Comment: 5 pages, 5 figures. Published versio

    Modified dispersion relations and the response of the rotating Unruh-DeWitt detector

    Full text link
    We study the response of a rotating monopole detector that is coupled to a massless scalar field which is described by a non-linear dispersion relation in flat spacetime. Since it does not seem to be possible to evaluate the response of the rotating detector analytically, we resort to numerical computations. Interestingly, unlike the case of the uniformly accelerated detector that has been considered recently, we find that defining the transition probability rate of the rotating detector poses no difficulties. Further, we show that the response of the rotating detector can be computed {\it exactly}\vee (albeit, numerically) even when it is coupled to a field that is governed by a non-linear dispersion relation. We also discuss the response of the rotating detector in the presence of a cylindrical boundary on which the scalar field is constrained to vanish. While super-luminal dispersion relations hardly affect the standard results, we find that sub-luminal dispersion relations can lead to relatively large modifications.Comment: V1: 11 pages, 3 figures; V2: 12 pages, 3 figures, considerably revised, we now calculate the detector response exactly; V3: 14 pages, 3 figures, minor changes, to appear in Phys. Rev.

    Gravitational Collapse of Inhomogeneous Dust in (2+1) Dimensions

    Full text link
    We examine the gravitational collapse of spherically symmetric inhomogeneous dust in (2+1) dimensions, with cosmological constant. We obtain the analytical expressions for the interior metric. We match the solution to a vacuum exterior. We discuss the nature of the singularity formed by analyzing the outgoing radial null geodesics. We examine the formation of trapped surfaces during the collapse.Comment: Accepted for publication in CQ

    Cosmology in three dimensions: steps towards the general solution

    Full text link
    We use covariant and first-order formalism techniques to study the properties of general relativistic cosmology in three dimensions. The covariant approach provides an irreducible decomposition of the relativistic equations, which allows for a mathematically compact and physically transparent description of the 3-dimensional spacetimes. Using this information we review the features of homogeneous and isotropic 3-d cosmologies, provide a number of new solutions and study gauge invariant perturbations around them. The first-order formalism is then used to provide a detailed study of the most general 3-d spacetimes containing perfect-fluid matter. Assuming the material content to be dust with comoving spatial 2-velocities, we find the general solution of the Einstein equations with non-zero (and zero) cosmological constant and generalise known solutions of Kriele and the 3-d counterparts of the Szekeres solutions. In the case of a non-comoving dust fluid we find the general solution in the case of one non-zero fluid velocity component. We consider the asymptotic behaviour of the families of 3-d cosmologies with rotation and shear and analyse their singular structure. We also provide the general solution for cosmologies with one spacelike Killing vector, find solutions for cosmologies containing scalar fields and identify all the PP-wave 2+1 spacetimes.Comment: 35 pages, 2 figure

    Classical and Quantum Gravitational Collapse in d-dim AdS Spacetime I. Classical Solutions

    Full text link
    We study the collapse of a spherically symmetric dust distribution in dd-dimensional AdS spacetime. We investigate the role of dimensionality, and the presence of a negative cosmological constant, in determining the formation of trapped surfaces and the end state of gravitational collapse. We obtain the self-similar solution for the case of zero cosmological constant, and show that one cannot construct a self-similar solution when a cosmological constant is included.Comment: 19 pages, sections on surface gravity removed, section on self similar solution expanded, appendix removed, references added. To appear in Phys. Rev.

    Albuterol metered dose inhaler performance under hyperbaric pressures

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionINTRODUCTION: The stimulus for this presentation was an asthma attack suffered on the first dive by a victim of a severe industrial electrical burn. The patient's response to albuterol metered dose inhaler (MDI) treatment given at depth was felt to have been poor. We thus wondered what the output of these devises (chlorofluorocarbon or CFC) was at therapeutic depth versus normobaria. As the current MDIs were being phased out of use we also wondered what the comparable output characteristics of the replacement MDIs (hydrofluoroalkane or HFA) would be. MATERIALS AND METHODS: The dose and aerosol particle size and number delivered by MDIs were measured in a hyperbaric chamber at pressures ranging from one atmosphere absolute (1 ATA, 0 feet of seawater, fsw, 101 kPa) to three ATA (66 fsw, 304 kPa). Mass delivered was measured by a Sartorius B120 analytical balance, and particle size analysis by a TSI 3080L electrostatic classifier with a TSI 3776 ultrafine condensation particle counter. RESULTS: Dose delivery per actuation by CFC and long canister HFA powered MDIs was 13±1% and 12±1% less, respectively, at 3 ATA compared to 1 ATA. However, dose delivery by short canister HFA MDIs was not significantly changed with pressure. The geometric mean diameters of nano particles from the CFC and short canister HFA MDIs decreased from 50 nm at 0 fsw to 32 nm at 66 fsw whereas the long canister HFA aerosol diameters were not affected. The numbers of nanometer size particles delivered at 66 fsw were only 4-7% of those delivered at 0 fsw for the CFC and long canister HFA MDIs; whereas for the short canister HFAs it was 26%. CONCLUSIONS: The doses of albuterol and the sizes and numbers of aerosol particles emitted from albuterol MDIs actuated in a hyperbaric environment vary by canister type; CFC MDI loss is probably unimportant

    Dynamical formation and evolution of (2+1)-dimensional charged black holes

    Full text link
    In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.Comment: 40 pages, 15 figure

    Canonical Quantization of Spherically Symmetric Dust Collapse

    Full text link
    Quantum gravity effects are likely to play a crucial role in determining the outcome of gravitational collapse during its final stages. In this contribution we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models, which describe the collapse of spherical, inhomogeneous, non-rotating dust. Although there are many models of gravitational collapse, this particular class of models stands out for its simplicity and the fact that both black holes and naked singularity end states may be realized on the classical level, depending on the initial conditions. We will obtain the appropriate Wheeler-DeWitt equation and then solve it exactly, after regularization on a spatial lattice. The solutions describe Hawking radiation and provide an elegant microcanonical description of black hole entropy, but they raise other questions, most importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua N. Goldber

    Naked Singularity Formation In f(R) Gravity

    Full text link
    We study the gravitational collapse of a star with barotropic equation of state p=wρp=w\rho in the context of f(R)f({\mathcal R}) theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=αRmf({\mathcal R})=\alpha{\mathcal R}^{m}, we show that for an appropriate initial value of the energy density, if α\alpha and mm satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α\alpha obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR
    corecore