We use covariant and first-order formalism techniques to study the properties
of general relativistic cosmology in three dimensions. The covariant approach
provides an irreducible decomposition of the relativistic equations, which
allows for a mathematically compact and physically transparent description of
the 3-dimensional spacetimes. Using this information we review the features of
homogeneous and isotropic 3-d cosmologies, provide a number of new solutions
and study gauge invariant perturbations around them. The first-order formalism
is then used to provide a detailed study of the most general 3-d spacetimes
containing perfect-fluid matter. Assuming the material content to be dust with
comoving spatial 2-velocities, we find the general solution of the Einstein
equations with non-zero (and zero) cosmological constant and generalise known
solutions of Kriele and the 3-d counterparts of the Szekeres solutions. In the
case of a non-comoving dust fluid we find the general solution in the case of
one non-zero fluid velocity component. We consider the asymptotic behaviour of
the families of 3-d cosmologies with rotation and shear and analyse their
singular structure. We also provide the general solution for cosmologies with
one spacelike Killing vector, find solutions for cosmologies containing scalar
fields and identify all the PP-wave 2+1 spacetimes.Comment: 35 pages, 2 figure