8,176 research outputs found

    The design of a Pulse Position Modulated /PPM/ optical communication system

    Get PDF
    Design of pulse position modulation optical communication syste

    Communication theory for the free space optical channel Interim technical report

    Get PDF
    Quantum detectors, noise mechanisms, and application to optical communication theor

    Computing Matveev's complexity via crystallization theory: the boundary case

    Get PDF
    The notion of Gem-Matveev complexity has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via Gem-Matveev complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2\mathbb D^2 and two exceptional fibers and, therefore, for all torus knot complements.Comment: 27 pages, 14 figure

    Optical deep space communication via relay satellite

    Get PDF
    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed

    Innovation in risky markets. Multinational and domestic firms in the UK regions

    Get PDF
    This paper analyses the relationship between firm engagement in innovation and perception of market risk. It points to heterogeneity in the behaviour of multinationals (MNEs) versus single domestic firms, emphasising how this relationship changes across regional contexts

    Calculating the 3D magnetic field of ITER for European TBM studies

    Full text link
    The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.Comment: In proceedings of the 28th Symposium on Fusion Technolog

    Avaliação de protocolos para extração de DNA de Larvas individuais de helmintos.

    Get PDF
    A genotipagem de helmintos, parasitas do trato gastrintestinal de ruminantes, permite o conhecimento de polimorfismos moleculares relacionados a características adaptativas, dentre as quais se destaca a resistência a produtos anti-helmínticos. Uma vez que a determinação da freqüência gênica e da freqüência aléIica para os polimorfismos de interesse requer a avaliação individual dos helmintos, dificuldades técnicas têm sido encontradas para a recuperação de quantidade suficiente de DNA a partir de larvas para a aplicação de técnicas moleculares. Dessa maneira, o objetivo deste trabalho foi avaliar diferentes protocolos para a extração de DNA de larvas individuais de helmintos Haemonchus contortus e Trichostrongylus colubriformis no estádio L3. Após cultura de fezes de ovinos, por sete dias, as larvas de helmintos foram recuperadas e destinadas á extração de DNA

    Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models

    Get PDF
    We investigate the lifting effect of rotation on the thermal evolution of CO WDs accreting CO-rich matter. We find that rotation induces the cooling of the accreting star so that the delivered gravitational energy causes a greater expansion with respect to the standard non-rotating case. The increase in the surface radius produces a decrease in the surface value of the critical angular velocity and, therefore, the accreting WD becomes gravitationally unbound (Roche instability). This occurrence is due to an increase in the total angular momentum of the accreting WD and depends critically on the amount of specific angular momentum deposited by the accreted matter. If the specific angular momentum of the accreted matter is equal to that of the outer layers of the accreting structure, the Roche instability occurs well before the accreting WD can attain the physical conditions for C-burning. If the values of both initial angular velocity and accretion rate are small, we find that the accreting WD undergoes a secular instability when its total mass approaches 1.4 Msun. At this stage, the ratio between the rotational and the gravitational binding energy of the WD becomes of the order of 0.1, so that the star must deform by adopting an elliptical shape. In this case, since the angular velocity of the WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss of rotational energy and angular momentum via GWR. We find that, independent of the braking efficiency, the WD contracts and achieves the physical conditions suitable for explosive C-burning at the center so that a type Ia supernova event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical Journa
    corecore