147 research outputs found

    Fokker-Planck and Landau-Lifshitz-Bloch Equations for Classical Ferromagnets

    Full text link
    A macroscopic equation of motion for the magnetization of a ferromagnet at elevated temperatures should contain both transverse and longitudinal relaxation terms and interpolate between Landau-Lifshitz equation at low temperatures and the Bloch equation at high temperatures. It is shown that for the classical model where spin-bath interactions are described by stochastic Langevin fields and spin-spin interactions are treated within the mean-field approximation (MFA), such a ``Landau-Lifshitz-Bloch'' (LLB) equation can be derived exactly from the Fokker-Planck equation, if the external conditions change slowly enough. For weakly anisotropic ferromagnets within the MFA the LLB equation can be written in a macroscopic form based on the free-energy functional interpolating between the Landau free energy near T_C and the ``micromagnetic'' free energy, which neglects changes of the magnetization magnitude |{\bf M}|, at low temperatures.Comment: 9 pages, no figures, a small error correcte

    Bloch-Wall Phase Transition in the Spherical Model

    Full text link
    The temperature-induced second-order phase transition from Bloch to linear (Ising-like) domain walls in uniaxial ferromagnets is investigated for the model of D-component classical spin vectors in the limit D \to \infty. This exactly soluble model is equivalent to the standard spherical model in the homogeneous case, but deviates from it and is free from unphysical behavior in a general inhomogeneous situation. It is shown that the thermal fluctuations of the transverse magnetization in the wall (the Bloch-wall order parameter) result in the diminishing of the wall transition temperature T_B in comparison to its mean-field value, thus favouring the existence of linear walls. For finite values of T_B an additional anisotropy in the basis plane x,y is required; in purely uniaxial ferromagnets a domain wall behaves like a 2-dimensional system with a continuous spin symmetry and does not order into the Bloch one.Comment: 16 pages, 2 figure

    Quantum statistical metastability for a finite spin

    Full text link
    We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spins S=10 (such as Mn_12Ac and Fe_8) and S=100 by a direct numerical approach. At second-order transitions the level making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between first- and second-order transitions are shifted, favoring a second-order transition: For Fe_8 in zero field the transition should be first order according to a theory with S \to \infty, but we show that there are no skipped levels at the transition. Applying a field along the hard axis in Fe_8 makes transition the strongest first order. For the same model with S=100 we confirmed the existence of a region where a second-order transition is followed by a first-order transition [X. Martines Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter (in press)].Comment: 7 Phys. Rev. pages, 10 figures, submitted to PR

    Landau-Zener-Stueckelberg effect in a model of interacting tunneling systems

    Full text link
    The Landau-Zener-Stueckelberg (LZS) effect in a model system of interacting tunneling particles is studied numerically and analytically. Each of N tunneling particles interacts with each of the others with the same coupling J. This problem maps onto that of the LZS effect for a large spin S=N/2. The mean-field limit N=>\infty corresponds to the classical limit S=>\infty for the effective spin. It is shown that the ferromagnetic coupling J>0 tends to suppress the LZS transitions. For N=>\infty there is a critical value of J above which the staying probability P does not go to zero in the slow sweep limit, unlike the standard LZS effect. In the same limit for J>0 LZS transitions are boosted and P=0 for a set of finite values of the sweep rate. Various limiting cases such as strong and weak interaction, slow and fast sweep are considered analytically. It is shown that the mean-field approach works well for arbitrary N if the interaction J is weak.Comment: 13 PR pages, 15 Fig

    The 1/D Expansion for Classical Magnets: Low-Dimensional Models with Magnetic Field

    Full text link
    The field-dependent magnetization m(H,T) of 1- and 2-dimensional classical magnets described by the DD-component vector model is calculated analytically in the whole range of temperature and magnetic fields with the help of the 1/D expansion. In the 1-st order in 1/D the theory reproduces with a good accuracy the temperature dependence of the zero-field susceptibility of antiferromagnets \chi with the maximum at T \lsim |J_0|/D (J_0 is the Fourier component of the exchange interaction) and describes for the first time the singular behavior of \chi(H,T) at small temperatures and magnetic fields: \lim_{T\to 0}\lim_{H\to 0} \chi(H,T)=1/(2|J_0|)(1-1/D) and \lim_{H\to 0}\lim_{T\to 0} \chi(H,T)=1/(2|J_0|)

    Adaptive Optics and Optical Vortices

    Get PDF

    Phase transition between quantum and classical regimes for the escape rate of a biaxial spin system

    Full text link
    Employing the method of mapping the spin problem onto a particle one, we have derived the particle Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field. Using the Hamiltonian and introducing the parameter p((UmaxE)/(UmaxUmin))p (\equiv (U_{max}-E)/(U_{max}-U_{min})) where UmaxU_{max} (U_{min}) corresponds to the top (bottom) of the potential and EE is the energy of the particle, we have studied the first- or second-order transition around the crossover temperature between thermal and quantum regimes for the escape rate, depending on the anisotropy constant and the external magnetic field. It is shown that the phase boundary separating the first- and second-order transition and its crossover temperature are greatly influenced by the transverse anisotropy constant as well as the transverse or longitudinal magnetic field.Comment: 5 pages + 3 figures, to be published in Phys. Rev.

    Dislocation-induced spin tunneling in Mn-12 acetate

    Full text link
    Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is developed, that takes into account imperfections of the crystal structure and is based upon the generalization of the Landau-Zener effect for incoherent tunneling from excited energy levels. It is shown that linear dislocations at plausible concentrations provide the transverse anisotropy which is the main source of tunneling in Mn-12. Local rotations of the easy axis due to dislocations result in a transverse magnetic field generated by the field applied along the c-axis of the crystal, which explains the presence of odd tunneling resonances. Long-range deformations due to dislocations produce a broad distribution of tunnel splittings. The theory predicts that at subkelvin temperatures the relaxation curves for different tunneling resonances can be scaled onto a single master curve. The magnetic relaxation in the thermally activated regime follows the stretched-exponential law with the exponent depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR

    Quantum dynamics of crystals of molecular nanomagnets inside a resonant cavity

    Get PDF
    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between Fabry-Perot superconducting mirrors. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

    Quantum-Classical Phase Transition of Escape rate in Biaxial Spin Particles

    Full text link
    The escape rates of the biaxial single domain spin particles with and without an applied magnetic field are investigated. Using the strict potential field description of spin systems developed by Ulyanov and Zaslavskii we obtain new effective Hamiltonians which are considered to be in exact spin-coordinate correspondence unlike the well studied effective Hamiltonians with the approximate correspondence. The sharp first-order transition is found in both cases. The phase diagram of the transitions depending on the anisotropy constant and the external field is also given.Comment: 15 pages, 8 figure
    corecore