899 research outputs found

    Multiple scattering of matter waves: an analytic model of the refractive index for atomic and molecular gases

    Full text link
    We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines a WKB treatment of the long range attraction with the Fraunhofer model treatment of the short range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.Comment: 5 pages, 1 figure, 2 table

    An analytic model of rotationally inelastic collisions of polar molecules in electric fields

    Full text link
    We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the "shape" of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne-OCS(1Σ^{1}\Sigma) and Ar-NO(2Π^2\Pi) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)] demonstrates the model's ability to qualitatively explain the field dependence of all the scattering features observed

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    High-Energy Approach for Heavy-Ion Scattering with Excitations of Nuclear Collective States

    Full text link
    A phenomenological optical potential is generalized to include the Coulomb and nuclear interactions caused by the dynamical deformation of its surface. In the high-energy approach analytical expressions for elastic and inelastic scattering amplitudes are obtained where all the orders in the deformation parameters are included. The multistep effect of the 2+^+ rotational state excitation on elastic scattering is analyzed. Calculations of inelastic cross sections for the 17^{17}O ions scattered on different nuclei at about hundred Mev/nucleon are compared with experimental data, and important role of the Coulomb excitation is established.Comment: 9 pages; 3 figures. Submitted to the Physics of Atomic Nucle

    Quasiparticle interference on the surface of the topological crystalline insulator Pb_(1−x)Sn_xSe

    Get PDF
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase, which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb_(1−x)Sn_xSe in the topologically nontrivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb_(0.77)Sn_(0.23)Se and PbSe have different topological nature

    Short-range oscillators in power-series picture

    Get PDF
    A class of short-range potentials on the line is considered as an asymptotically vanishing phenomenological alternative to the popular confining polynomials. We propose a method which parallels the analytic Hill-Taylor description of anharmonic oscillators and represents all our Jost solutions non-numerically, in terms of certain infinite hypergeometric-like series. In this way the well known solvable Rosen-Morse and scarf models are generalized.Comment: 23 pages, latex, submitted to J. Phys. A: Math. Ge

    Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

    Get PDF
    Abstract The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\u27s radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). This reveals graphically that both competing mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession. Key Points Clear observations to higher energy than ever before Precise detection of where and how acceleration takes place Provides new eyes on megaelectron Volt

    ПОВЫШЕНИЕ КАЧЕСТВА ШАРЖИРОВАНИЯ ПОВЕРХНОСТИ НАКАТНЫМ РОЛИКОМ ПУТЕМ СООБЩЕНИЯ ЕМУ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ

    Get PDF
    The paper contains results of experimental investigations reflecting the impact of technological and acoustic parameters on abrasive ability and resistance period of diamond-containing coating. Such  coating has been obtained on the disk surface as a result of its charging with a knurling tool under normal conditions and imparting ultrasonic oscillations to it. Приведены результаты экспериментальных исследований, отражающие влияние технологических и акустических параметров на абразивную способность и период стойкости алмазосодержащего покрытия, полученного на поверхности диска в результате его шаржирования накатным роликом в обычных условиях и при сообщении ему ультразвуковых колебаний

    Early Observations and Analysis of the Type Ia SN 2014J in M82

    Full text link
    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and twenty-three NIR spectra were obtained from 10 days before (-10d) to 10 days after (+10d) the time of maximum BB-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify CI λ\lambda 1.0693 in the NIR spectra. We find that MgII lines with high oscillator strengths have higher initial velocities than other MgII lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for OI, MgII, SiII, SII, CaII and FeII suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from -10d to +29d, in the UBVRIJHUBVRIJH and KsK_s bands. SN 2014J is about 3 magnitudes fainter than a normal SN Ia at the distance of M82, which we attribute to extinction in the host. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using RVR_V = 1.46, which is consistent with previous studies, SNooPy finds that AV=1.80A_V = 1.80 for E(BV)host=1.23±0.01E(B-V)_{host}=1.23 \pm 0.01 mag. The maximum BB-band brightness of 19.19±0.10-19.19 \pm 0.10 mag was reached on February 1.74 UT ±0.13 \pm 0.13 days and the supernova had a decline parameter of Δm15=1.11±0.02\Delta m_{15}=1.11 \pm 0.02 mag.Comment: 6 figures, 6 tables, submitted to the Ap
    corecore