113 research outputs found

    Построение диагностической модели сложного объекта диагностирования на основе минимизации множества вероятностно-лингвистических синдромов

    Get PDF
    The probabilistic-linguistic approach to the representation and transformation of the fuzzy information allows to show how to solve the problem of building types of numerous probabilistic-linguistic syndromes characterizing all possible technical conditions of complex object for diagnostics.На основе вероятностно-лингвистического подхода к представлению и преобразованию нечеткой информации показан порядок решения задачи типизации сформированного экспертами множества вероятностно-лингвистических синдромов, характеризующих все возможные технические состояния сложного объекта диагностирования

    The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs

    Get PDF
    Most temperate plants tolerate both chilling and freezing temperatures whereas many species from tropical regions suffer chilling injury when exposed to temperatures slightly above freezing. Cold acclimation induces the expression of cold-regulated genes needed to protect plants against freezing stress. This induction is mediated, in part, by the CBF transcription factor family. To understand the evolution and function of this family in cereals, we identified and characterized 15 different CBF genes from hexaploid wheat. Our analyses reveal that wheat species, T. aestivum and T. monococcum, may contain up to 25 different CBF genes, and that Poaceae CBFs can be classified into 10 groups that share a common phylogenetic origin and similar structural characteristics. Six of these groups (IIIc, IIId, IVa, IVb, IVc and IVd) are found only in the Pooideae suggesting they represent the CBF response machinery that evolved recently during colonization of temperate habitats. Expression studies reveal that five of the Pooideae-specific groups display higher constitutive and low temperature inducible expression in the winter cultivar, and a diurnal regulation pattern during growth at warm temperature. The higher constitutive and inducible expression within these CBF groups is an inherited trait that may play a predominant role in the superior low temperature tolerance capacity of winter cultivars and possibly be a basis of genetic variability in freezing tolerance within the Pooideae subfamily

    Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings

    Get PDF
    Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals

    CONSTRUCTING A DIAGNOSTIC MODEL OF A COMPLEX OBJECT BASED MINIMIZATION SET OF PROBABILITY-LINGUISTIC SYNDROMES

    No full text
    The probabilistic-linguistic approach to the representation and transformation of the fuzzy information allows to show how to solve the problem of building types of numerous probabilistic-linguistic syndromes characterizing all possible technical conditions of complex object for diagnostics

    Molecular Subtyping of Poultry-Associated Type A Clostridium perfringens Isolates by Repetitive-Element PCR

    No full text
    Clostridium perfringens strains (type A) isolated from an integrated poultry operation were subtyped using repetitive-element PCR with Dt primers. Isolates were obtained from fecal, egg shell, fluff, and carcass rinse samples as part of a previously reported temporally linked epidemiological survey. A total of 48 isolates of C. perfringens were obtained from different stages of the broiler chicken production chain from two separate breeder farms that supplied a single hatchery that in turn provided chicks to a single grow-out farm whose flocks were processed at a single plant. All 48 isolates were typeable (100% typeability) by repetitive-element PCR with Dt primers. This subtyping method was highly reproducible and discriminatory. By repetitive-element PCR with Dt primers, isolates were classified into four major branches with 12 subgroups or clades. The Simpson's index of discrimination was calculated to be 0.96 for groupings of >95% correlation. Toxin gene profiles of the isolates indicated that all of the isolates were C. perfringens alpha-toxin gene positive and 46 of 48 isolates were beta2-toxin gene positive. All strains were negative for beta- and epsilon-toxin genes. Repetitive sequence-based PCR was found to be a technically practical and reproducible means of subtyping C. perfringens libraries from specific epidemiological or production environment settings
    corecore