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Abstract

Background: Wheat is a major staple crop with broad adaptability to a wide range of environmental conditions.
This adaptability involves several stress and developmentally responsive genes, in which microRNAs (miRNAs) have
emerged as important regulatory factors. However, the currently used approaches to identify miRNAs in this
polyploid complex system focus on conserved and highly expressed miRNAs avoiding regularly those that are often
lineage-specific, condition-specific, or appeared recently in evolution. In addition, many environmental and
biological factors affecting miRNA expression were not yet considered, resulting still in an incomplete repertoire of
wheat miRNAs.

Results: We developed a conservation-independent technique based on an integrative approach that combines
machine learning, bioinformatic tools, biological insights of known miRNA expression profiles and universal criteria
of plant miRNAs to identify miRNAs with more confidence. The developed pipeline can potentially identify novel
wheat miRNAs that share features common to several species or that are species specific or clade specific. It
allowed the discovery of 199 miRNA candidates associated with different abiotic stresses and development stages.
We also highlight from the raw data 267 miRNAs conserved with 43 miRBase families. The predicted miRNAs are
highly associated with abiotic stress responses, tolerance and development. GO enrichment analysis showed that
they may play biological and physiological roles associated with cold, salt and aluminum (Al) through auxin
signaling pathways, regulation of gene expression, ubiquitination, transport, carbohydrates, gibberellins, lipid,
glutathione and secondary metabolism, photosynthesis, as well as floral transition and flowering.

Conclusion: This approach provides a broad repertoire of hexaploid wheat miRNAs associated with abiotic stress
responses, tolerance and development. These valuable resources of expressed wheat miRNAs will help in
elucidating the regulatory mechanisms involved in freezing and Al responses and tolerance mechanisms as well as
for development and flowering. In the long term, it may help in breeding stress tolerant plants.
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Background
Abiotic stresses such as cold, drought, salt and aluminum
(Al) limit plant growth and development, causing reduc-
tion in crop yield and important economic losses for
farmers. To tolerate these stresses, plants have evolved a
broad spectrum of metabolic, physiological and develop-
mentally adaptations. These adaptive changes are under
the control of dynamic networks of genetic regulatory
mechanisms that involve a large number of stress respon-
sive genes. MicroRNAs (miRNAs), a major class of small
non-coding RNAs, have emerged as key regulators of gene
expression at the post-transcriptional level during plant
growth and development [1-3]. Several studies have shown
that many miRNA families are involved in response to dif-
ferent abiotic stresses in many species [4-7]. A large num-
ber of plant miRNAs and their targets have been identified
in the plant model Arabidopsis thaliana and many other
species. Recent results have shown that plant miRNA
genes are dispersed throughout the genome [8] within
protein coding genes [8,9], introns of protein coding and
non-coding genes, and in intergenic regions [10,11].
Moreover, miRNAs may be produced from repetitive
transposable elements [12,13]. To date, at the best of our
knowledge, 2707 wheat miRNA candidates were identified
by both bioinformatics and experimental approaches,
using wheat expressed sequence tags (EST) database, the
available genomic sequences of the hexaploid wheat gen-
ome, its individual chromosome arms and its ancestors
[6,13-29]. Among the wheat miRNA published sequences,
237 are registered in miRBase, a database of experimental
miRNAs [30], and 170 are registered in PMRD, a database
of plant miRNAs identified using an in silico approach
[31]. Although the wheat genome is completely se-
quenced, it is not yet possible to perform a thorough
genome-wide study in the hexaploid wheat T. aestivum
since the genome is not completely assembled and anno-
tated. This is caused by its large and complex genome
containing a high percentage of DNA repeats (hexaploid
genome AABBDD with approximately 1.7 × 1010 bp with
at least 80% of DNA repeats) [32]. In silico approaches for
the prediction of miRNAs include screening genomic or
EST databases for orthologous sequences of known miR-
NAs and analyzing their pre-miRNA hairpin structures.
Although these approaches were successful in identifying
conserved miRNAs in plants that have their genomes fully
sequenced and annotated [10,33,34], they eliminate the
potential of searching for low abundance miRNAs that are
often lineage-specific [35] or condition-specific [36] or
that appeared recently in evolution (young miRNAs). The
challenge is bigger using polyploid species with partially
sequenced and assembled genome such as the hexa-
ploid wheat having a high content of repetitive DNA.
To tackle this issue, one should develop conservation-
independent techniques based on structure analyses
and/or expression pattern of dicer cleavage products
among pre-miRNAs [37].
Most computational approaches labeled as miRNA

predictors are actually pre-miRNA predictors, in the
sense that they identify candidate genomic regions that
may form pre-miRNAs but rarely take into account the
availability of candidate mature miRNA evidence within
the pre-miRNA. Several tools such as miRDeep [37,38],
miRanalyzer [39,40] and MiRdup [41] were developed to
predict miRNAs from raw reads data and shown to be
accurate in most cases. Furthermore, many factors that
affect miRNA expression including genotypes, tissues,
age, development stage, growth condition (soil, hydro-
ponic solution, temperature, humidity and photoperiod),
stress treatment, are rarely considered in previous wheat
miRNA identification studies. All wheat reported miRNAs
were identified in libraries produced from seedlings or
plants grown under normal conditions [14,21,23,26,31], or
tissue exposed to heat [15] or seedling [28] and pollen
mother cells from plants [6] exposed to cold stress [6], or
drought [16]. They were identified from different geno-
types of winter or spring wheat in soil, or hydroponic solu-
tion and under different photoperiod conditions, or in
field conditions. Since miRNA expression is tissue specific
and regulated in response to plant development and
growth conditions, the miRNA repertoire of hexaploid
wheat is still incomplete. Although a large number of miR-
NAs associated with development or some abiotic stresses
in wheat were previously identified, their functional diver-
sity in Al, freezing tolerance, and floral transition in winter
wheat is still unknown. Hence, the identification of miR-
NAs associated with tolerance to abiotic stress and floral
transition is a first step towards the elucidation of their
role in wheat.
To ensure an accurate identification of a large fraction

of miRNAs associated with different physiological condi-
tions in both stress sensitive and tolerant wheat, we con-
ducted the present study to: 1) identify miRNAs from
different tissues of plants from different genotypes
grown under different stress conditions (cold, salt and
aluminum) and at different development stages (vegeta-
tive and reproductive phases); 2) develop an integrative
pipeline that combines bioinformatic tools, biological in-
sights about known miRNA expression and dicer
ligation patterns according to the universal plant miRNA
criteria [37,38], miRNA expression profiles in deep se-
quencing data [42], functional classification and experi-
mental approaches (Figure 1). The bioinformatic tools
include Mipred [43], HHMMiR [44], MirCheck [45]
and MiRdup*, a plant updated version of our machine
learning MiRdup [41] which validates the position of
sequenced miRNAs in its corresponding folded pre-
miRNA. Our integrative approach allows the discovery
and profile of 165 novel hexaploid wheat abiotic stress



Figure 1 Overview of the wheat miRNA pipeline. The procedure is divided in three parts: producing and sequencing small RNA libraries, the
bioinformatic prediction of miRNAs and functional analysis of the predicted miRNAs. The customized or developed steps are marked by stars.
Orange boxes specify the data at hand after each given step. For details see Experimental procedure.
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responsive candidate miRNAs including ones associ-
ated with cold (52 miRNAs) and Al (27 miRNAs) toler-
ance as well as 99 developmentally responsive miRNAs
with a high confidence level. It is the first study to re-
port a large scale identification of hexaploid miRNome
miRNAs from different tissues of sensitive and tolerant
genotypes under normal conditions and short/long ex-
posure to different abiotic stresses during vegetative
and/or reproductive phase.
Results
Identification of miRNA candidates and their targets in
hexaploid wheat
Our miRNA discovery pipeline consists of more than
twenty steps divided in three main parts: producing and
sequencing small RNAs, predicting miRNAs from deep
sequencing data, classifying predicted miRNAs based on
their expression profiles and Gene Ontology (GO) of
their target genes (Figure 1). The sequencing of ten
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constructed libraries from three wheat genotypes grown
under different abiotic stress conditions and develop-
ment stages (Additional file 1: Method S1) yielded a total
of 89,105,096 redundant raw reads (66,400,401 distinct
reads) with 56% of high sequence quality (Additional
file 2: Table S2). Before mapping the raw reads, we col-
lected 1.4 million wheat ESTs from several databases,
clustered into 127,039 Uniref clusters yielding to the
best of our knowledge, the largest well-annotated EST
databank in wheat (Additional file 1: Method S2). After
raw reads adapter removal, a total of 56.4 million
unique raw reads were mapped to our collected EST
database resulting of 5.4 million unique mapped se-
quences (Figure 1). We identified 168,834 small RNAs
and extracted 337,668 potential pre-miRNAs. Among
the extracted pre-miRNA, 17,180 and 39,144 potential
hairpins satisfy the minimal structural criteria of miR-
NAs assessed by two well-known pre-miRNA predic-
tors, MiPred [43] and HHMMiR [44], respectively
(Figure 1). The lack of consideration of the mature
miRNA localization in the hairpin, the expression pro-
files of reads throughout the hairpin, and/or other evi-
dence of plant-miRNA characteristics represent major
causes of overestimation of the number of candidate
hairpins. We used a two-step method of miRNA identi-
fication within its hairpin from the folded pre-miRNA
using MiRdup* and expression profile filtering using
Meyers et al. relaxed criteria [42] (Figure 1). In the first
step, MiRdup* trained on experimentally validated miR-
NAs from different datasets (all miRBase species, all
plants and monocots only) localizes miRNA positions in
pre-miRNAs (Additional file 1: Method S4 and Additional
file 2: Table S3). The use of MiRdup* reduced the number
of pre-miRNA hairpin candidates by 81% (Additional
file 3: Figures S1 and S2). In the second step, the expres-
sion profile filtering was based on miRNA expression
pattern using the abundance of the miRNA candidates
in each library and the distribution of reads mapped to a
candidate pre-miRNA according to Meyers et al. re-
laxed criteria [42]. This allowed the elimination of the
miRNA dicer-Like candidates and the reduction of
miRNA candidates by 84%.
Overall, this method results in the identification of

more candidates (Additional file 3: Figures S1 and S2)
compared to Meyers et al., [42] and MIRcheck [45].
Consequently, it yields pre-miRNA candidates that have
various ranges of secondary structures as shown in dot-
bracket notation (Additional file 4: data SD1). Taken to-
gether, our approach identifies 199 unique miRNA
candidates associated with 361 pre-miRNAs (Additional
file 4: data SD1). It is important to notice that the major-
ity of reads (95%) and the predicted miRNAs (64%) have
the highest quality value for their sequence (Additional
file 2: Table S4). It is important to note that, MiRdup*
captures 95% of the miRNAs identified using MIRcheck
with the same criteria from Meyers et al. [42] while 151
putative candidates (containing validated candidates) are
excluded by MIRcheck (Additional file 3: Figures S2). In
addition, our pipeline identified miRNAs that have fea-
tures that are species specific, clade specific or shared
between several species. We found that among the 199
identified miRNAs, 147 were identified by MiRdup*
trained on all species of miRBase; only 49 were com-
monly identified by MiRdup* trained on the three data-
sets (all miRBase, all plants, monocot only). This
suggests that these miRNAs share common features with
all the widely separated plant lineages recorded in the
database miRBase. For instance, apMir_22246 corre-
sponding to miR160 with perfect match in wheat and
moss Physcomitrella patens (ppt-miR160) is highly
expressed in our investigated conditions indicating that
this miRNA may play common biological functions in
plants kingdom. While 109 miRNAs were only identified
by MiRdup* trained on all plant and 92 miRNAs when
trained on only monocot.
The number of identified miRNAs may be an overesti-

mation due to the redundancy created by similar but not
identical ESTs in part due to the polyploid nature of
wheat. In the latter scenario, two or more closely related
ESTs (true homeologs or ESTs with SNP differences)
could encode identical or closely related miRNAs. Fur-
thermore expressed isomiRNAs that share the same
properties with the real miRNA in one library could be
the dominant functional in another library. The Additional
file 3: Figure S3a highlights that the majority (about 69%)
of the predicted miRNAs are associated with one pre-
miRNA. Furthermore, most of the pre-miRNA candidates
(93%) harbour a unique miRNA leading to an exclusive
miRNA/pre-miRNA association (Additional file 3: Figure
S3b). To characterize further the nature of the pre-
miRNA candidates, we determined if they were associated
with repetitive transposable elements and protein coding
regions. The results revealed that 20% of pre-miRNAs that
correspond to 6.5% of miRNA candidates overlap with
transposable elements (at e-value of 5E-5 with 80% iden-
tity) from TREP database (Additional file 2: Table S5a). In
addition, 15% of ESTs corresponding to less than 5% of
miRNA candidates overlap partly with protein-coding re-
gions (at e-value of 1E-20 with 75% identity) from protein
plant database (Additional file 2: Table S5b).
Prediction of miRNA targets is an important step to

elucidate miRNA function in regulating gene expression.
Among the identified candidates, 67% (133/199) were pre-
dicted to have Uniref annotated target genes (Additional
file 2: Table S6). Unlike animal target genes, it is generally
accepted that plant targets adopt a perfect seed match
with the corresponding miRNAs, allowing more accuracy
in their prediction. We found that 37 miRNA candidates



Agharbaoui et al. BMC Genomics  (2015) 16:339 Page 5 of 17
are predicted to target a unique gene identified as UniRef
(Additional file 3: Figure S3c). Although the majority of
miRNA candidates seem to have more than two targets,
detailed analysis reveals that in many cases the targets an-
notated with different UniRefs have the same gene de-
scription (Additional file 2: Table S7). To better explore
the functional properties of the target genes, GO analyses
were performed (Additional file 3: Figure S3d).
We computed the enrichment of main GO Slim terms

found within these targets based on the three GO cat-
egories (Additional file 3: Figures S4a-6a). Table 1 shows
the enriched GO Slim terms and relevant associated tar-
get genes in libraries. An extensive description of GO
enrichment analysis is presented in Additional file 5.
Our results revealed that miRNA candidates target regu-
lators, cell metabolism and transport genes. The regula-
tory genes are enriched for many transcription factors
and protein families (Table 1 and Additional file 2: Table
S7). They are involved in regulation of gene expression,
signal transduction pathways and ubiquitin-mediated
Table 1 Selected GO Slim enrichment in the different librarie
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The enrichment is presented in four different symbols (“+++” for high (P-value < 10
symbol” for no enrichment (P-value ≥ 0.05). CC, cell component, MF, molecular func
conditions see Additional file 1 and Method S1; and about GO Slim terms classificat
protein modifications (GO Slim Nucleus with P-value =
9.1e-004, GO Slim DNA binding with P-value from 1.0e-
003 to 1.0e-005, GO Slim DNA metabolic process with P-
value = 5.5e-004, GO Slim protein binding with P-value =
1.2e-006). Cellular metabolism genes are involved in
hormone, lipid and carbohydrates metabolism (GO Slim
catalytic activity with P-value = 3.4e-006), amino acid
metabolism (GO Slim secondary metabolic process with
P-value = 3.7e-008) (Additional file 2: Table S7).

Characteristics of the miRNA candidates
Among the 199 predicted miRNAs, 30 have sequence
homology with 76 published miRNA in wheat (Figure 2a).
In addition, we explored the potential of conserved miR-
Base families present in our raw data that could not be
mapped into the EST and found 267 miRNAs, corre-
sponding to 43 families from which 25 families are known
in wheat [13-16,18-23,31,46-48] and 18 families have
homology with many plant species (Figure 2b). It is im-
portant to notice that 13 families (58 miRNAs) have not
s and their relevant target genes
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lipid-transfer protein, Sucrose transporters
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Ubiquitin-like-specific protease, MIKC-type MADS-box
transcription factors, Homeobox-leucine zipper protein

lower dev. DL related protein, Ubiquitin-like-specific protease

NA metabolic
rocess

Replication factor C, Histones, BARE-1 polyprotein

ec. metabolic
rocess

Phenylalanine ammonia-lyase, Tricetin 3',4',
5'-O-trimethyltransferase

−5), “++” for medium (P-value < 10−3), “+” for low (P-value < 0.05) and “no
tion, BP, biological process. For details about the libraries and investigated
ion and associated target genes, see Additional file 3: Figures S4a-6a.



Figure 2 Overview of the predicted miRNAs. a) Diagram of the intersection between miRNAs predicted by the novel approach, conserved
miRNAs identified by sequence homology, and miRNAs published in the literature; b) Evidence of conserved plant miRNA families present in
miRBase including those predicted by our approach (tae, osa, bdi, hvu, ath and ptc correspond respectively to Triticum aestivum, Oryza sativa,
Brachypodium distachyon, Hordeum vulgare L., Arabidopsis thaliana and Populus trichocarpa); c) The abundance bins of all predicted miRNAs in the
10 libraries (L1-L10) produced from plants grown under different investigated conditions. The abundance of the identified miRNAs represents the
number of reads sequenced in each library and classified on 4 levels: low, 10–99 reads; medium, 100–999 reads; and high, 1000 and up; d) the
length distribution of miRNAs associated with miRNAs differentially expressed in different investigated comparisons; e) the number of miRNA
targeted genes (presented by EST id or UniRef id) associated with miRNAs differentially expressed in different investigated comparisons. WcvCl,
winter wheat cultivar Clair (cold tolerant); ScvBo, spring wheat cultivar Bounty (cold and Al sensitive); WcvAt, winter wheat cultivar Atlas (Al
tolerant); A.P, aerial parts; L./Rep. T., leaves and reproductive tissues; N.C, normal conditions; Al, Aluminum; Vern., vernalization; Rep., reproductive;
Str. Resp., stress response; Tol., tolerance; Dev. resp., developmentally response; Fl. Trans, floral transition; Flw., flowering. See Additional file 1:
Method S1 and Additional file 2: Table S1 for libraries and conditions and Additional file 2: Table S10 for the different investigated comparisons.
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yet been reported in previous wheat miRNA identification
studies recorded in miRBase (Figure 2a). One can notice
that the expression patterns of predicted miRNAs are dif-
ferent between the 10 libraries (Figure 2c). The abundance
of 160 miRNAs corresponds at medium expression (abun-
dance between 100–999 reads) in at least one library and
39 miRNAs have high reads abundance. MiRNAs were
also classified according to their expression proportion
over the total reads mapping to the corresponding pre-
miRNAs [49]. Hence, one class would correspond to typ-
ical miRNA when its expression represents more than
50% of the expressed small RNAs mapping a given pre-
miRNA (Additional file 2: Table S8 and Additional file 4:
data SD2) [50]. Above 80% of the predicted miRNAs in
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each library correspond to typical miRNAs (Additional
file 2: Table S8) and they correspond to highly confident
expressed miRNAs (Additional file 4: data SD2).
The diversity of predicted miRNA sequences is greater

at 19 nt in length in all libraries (Additional file 3: Figure
S7a-d) while the diversity of conserved miRNAs is
greater at 21 nt (Additional file 3: Figure S7e) (unique
sequences). For redundant miRNA sequences, a major
peak at 21 nt was observed for both predicted and con-
served miRNAs (Additional file 3: Figure S7a-e). In
addition, the majority of the identified miRNA expressed
in the different investigated conditions are 19 or 21 nt
long depending on the tissues, stresses, growth condi-
tions or genotypes (Figure 2d). These miRNAs were
shown to regulate at least 150 targets (60 unirefs) and at
most 900 targets (335 unirefs) in all the explored condi-
tions (Figure 2e).

Confirmation of predicted miRNA candidates
Selected miRNA candidates were validated by northern
blotting, a useful criterion for authenticating miRNAs
[51]. For this selection, miRNAs were ranked according to
their expression level. Then, candidates were randomly
chosen from either the predicted only by MiRdup* (three
tested cases) or predicted by both MiRdup* and MIRcheck
(six tested cases) as well as low, medium and high expres-
sion. Their characteristics and their secondary structures
are presented in Figure 3a and Table 2. These structures
reveal the less stringent rules in MiRdup* concerning the
symmetric and/or asymmetric bulges in which the number
of successive unpaired bases could range up to five nt in
the duplex such as in apMiR_16808 (Figure 3a). Their ex-
pression was confirmed under all the investigated condi-
tions (Figure 3b and c). Many probes detect more than
one mature miRNA product with distinct lengths in differ-
ent libraries, 19/21 nt for apMir_14769, 21/23 nt for
apMir_20602, and apMir_22246 (Figure 3b and c). This
indicates that the second detected miRNA product may
be a variant of each of these miRNA candidates. At least
two of these miRNAs exhibit complex expression patterns
in response to cold, vernalization, salt, Al, and in develop-
ment (Figure 3b). For instance, the larger miRNA product
detected for apMir_14769 is preferentially expressed in
the Al-treated library from spring wheat (L8). In addition,
in some libraries the expression level of the apMir_20602
and apMir_22246 is much higher than what may be ex-
pected from the low read numbers obtained from deep se-
quencing (Figure 3c and Additional file 4: data SD1). This
may be due to the presence of very closely related miRNA
variants that can hybridize with the probes especially if the
mismatches are at their start/end. Probes used would not
be able to differentiate between these possibilities and thus
would represent an average response of these related miR-
NAs. The miRNA size may affect an AGO1 functional
state that mediates the recruitment of RDR6 [50,52]. How-
ever, for the apMir_20602 whose precursors overlap with
transposable elements (Additional file 2: Table S5a), the
high expression level and the presence of more than one
size detected by northern may be associated with their re-
petitive nature with sequence variation in the genome.
Expression of the identified miRNAs in response to
different abiotic stresses and plant development in wheat
To identify miRNAs associated with short and long ex-
posure to cold, salt and Al responses and tolerance,
three different control and five treated libraries from
sensitive and tolerant wheat genotypes were used. To
identify miRNAs associated with floral transition and
flowering in winter wheat, one library from plants at
vegetative phase under normal growth conditions, one
library under vernalization conditions (long exposure to
cold acclimation) and one library from de-acclimated
(one week under favourable conditions after cold accli-
mation) plants at the reproductive phase were used.
Analysis of miRNA expression levels identified 91%
(182/199) of miRNAs that are differentially expressed
between the stress conditions compared to the control
by more than twofold change with a FDR of 0.05 (see an
example of volcano plot showing differential expression
of miRNA candidates in response to long exposure to
cold in the Figure 4a). Out of the 182 miRNAs, 165 miR-
NAs are responsive to different abiotic stresses (cold, Al
and salt) and 99 miRNAs are associated with plant de-
velopment, particularly floral transition and flowering
(Figure 4b and Additional file 2: Table S9). Among abiotic
stress responsive ones, 52 and 27 miRNAs are associated
with cold and Al tolerance, respectively (Additional file 2:
Table S9). We also find that regulated miRNAs may ex-
hibit either common or specific expression patterns. Many
of them show expression that is tissue, stress, genotype, or
development stage-specific (Figure 4c and d). They may
be specific to Al in roots, cold/vernalization and salt
treatment in aerial parts, or common to two stresses or
to all of the investigated abiotic stresses (Figure 4c).
This indicates a crosstalk between the regulatory mech-
anisms of cold, Al and salt responses. This observation
is confirmed by northern blot analysis showing a
dynamic and complex expression pattern for several
abiotic stress responsive miRNAs (Figure 3b and c). For
instance, the candidates apMir_19980 and apMir_16808
are slightly up-regulated by cold, but also strongly
down-regulated by salt and Al. The regulated miRNAs
may be also specific to vegetative (L1- L2), reproductive
phase (L3); or common to the two phases (Figures 3b
and 4d). Moreover, out of the 199 miRNA candidates,
less than 10% are ubiquitously expressed under the in-
vestigated conditions.



Figure 3 (See legend on next page.)
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Figure 3 Experimental validation of predicted and conserved wheat miRNAs. a) Pre-miRNA secondary structure of miRNA candidates experimentally
validated by northern in the investigated libraries; b) northern blot of predicted miRNAs in common between MiRdup* and MIRcheck (CM*M) as well as
specifically predicted with MiRdup* tool (SM*); c) northern blot of miRNA candidates identified by both sequence homology against miRBase
(conserved miRNAs) and predicted in common between MIRcheck and MiRdup*. Ethidium bromide staining of the rRNAs is shown as gel loading
control. L0 represents the control library for Al treatment (L8) in spring wheat Bounty which was not sequenced. The numbers between the
parentheses correspond to the expression rank among the 199 predicted miRNAs. The lower value corresponds to the higher read abun-
dance. For more information about the libraries and conditions see Additional file 1: Method S1 and Additional file 2: Table S1.
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Functional classification of abiotic stress and
developmentally regulated miRNAs in wheat
The potential functions of regulated miRNAs (differen-
tially expressed between two conditions) were classified
into 24 miRNA groups for cold (Co1-Co8), Al (Al1-Al8)
and development (Dev1-Dev8) according to their expres-
sion in two wheat genotypes that differ in their degree of
tolerance as well as during different development stages
(Additional file 2: Table S10). For each stress, we found
that groups 5 and 6 (Co5-Co6 for cold/vernalization; Al5-
Al6 for Al) having similar expression profiles in tolerant
and sensitive genotypes are associated with cold/Al
responses while other groups (Co1-Co4, Co7-Co8 and
Table 2 Characteristics of selected miRNAs using MiRdup* an

ID MiRNAs A B C D

Predicted MiRNAs in common with MiRdup* and MIRcheck

apMir_20602 GUCAUCUAUAUUGGAACGGAG 1 1 1 5

apMir_19980 AUAGCAUCAUCCAUCCUACCA 3 1 3 6

apMir_14769 GUUGUCAUAUAUGUAUUGA 2 1 2 6

apMir_21052 UGAGAUGAGAUUACCCAAUAC 3 2 4 7

Predicted MiRNAs specific to MiRdup*

apMir_16808 CAUCGAUCAUCCAUCACCC 2 5 6 7

apMir_86202 AGGGUCGGCCAGCGGUGCGGCCCGU 4 2, 4 8 6

apMir_54471 UCAGUCAUAAUCCGGCAC 3 1 3 7

Conserved miRNAs predicted in common by MiRdup* and MIRcheck

apMir_22246
(tae-miR160)

UGCCUGGCUCCCUGUAUGCCA 3 1 3 9

apMir_20968
(miR395-21)

UGAAGUGUUUGGGGGAACUCU 2 1 2 8

The selection was based on several characteristics of the miRNA secondary structur
the successive unpaired bases in each bulge in the duplex (B), total number of the
Training datasets (B: all miRBase species; P: all plants; M: monocot only). The reverse
validation are presented in Additional file 2: Table S11.
Al1-Al4, Al7-Al8) showing different expression patterns
between the two genotypes are associated with tolerance
(Additional file 2: Table S10). For development miRNA
groups, 6 groups are associated with floral transition
(Dev3-Dev4) and flowering (Dev1-Dev2 and Dev7-Dev8).
The 24 miRNA groups were subjected to GO enrich-
ment analysis based on the 3 categories: cell component,
molecular function and biological process (Additional 3:
Figures S4b-6Sb). Several highly enriched GO Slim terms
associated with the studied conditions (Figure 5 and
Additional file 3: Figures S4b-6b).
The miRNA group associated with cold responses (Co5)

is specifically enriched for membrane (triose phosphate
d MIRcheck validated by northern blot

Associated
conditions

Relevant targets (with uniref ID) Training
dataset

Salt, floral transition
and flowering

Glutathione peroxidase (Q9SME6),
putative phosphatase phospho1
(M8CZ66)

BM

Al, floral transition
and flowering

Putative membrane-associated
protein (gi|22548307|gb|BU100508.1
|BU100508)

BPM

Cold, Al and salt Putative RSH disease resistance-related
protein (Q8H5X7), T-complex protein
1 subunit alpha (I3RZC6)

M

Cold, floral
transition and
flowering

NA P

Not differentially
expressed

Dehydrin, (CD909074, TA50415_4565),
Phosphorylase (Q84P16)

B

Cold, floral
transition and Al

NA BM

Salt, Al and floral
transition

NA MP

Cold, salt, Al, floral
transition and
flowering

Auxin response factor (M8BC98),
Auxin responsive protein (R7WEP7)

BPM

Cold, salt, Al,
flowering

Bifunctional 3′-phosphoadenosine
5′-phosphosulfate synthase
(M7ZFX2), ATP sulfurylase (M9T1P9)

BMP

e in the duplex including, the number of bulges in the duplex (A), number of
unpaired bases within the duplex (C), nucleotide number in the loop (D).
complement sequences of miRNAs used as probes for northern blot



Figure 4 Differentially expressed miRNAs in response to cold, salt, aluminum and development. a) The differential expression of miRNAs in
response to vernalization (presented on log10 adjusted p-value based on the FDR method of Benjamini and Hochberg [80], associated with the
log10 of the fold change (FC)). The lines specify the thresholds used to identify the most relevant differentially expressed miRNAs. The blue and
red dots correspond respectively to expressed small RNAs and predicted miRNAs; b) the frequencies of differentially expressed miRNAs in
response to vernalization, cold, Al, salt and development stage (floral transition and flowering); and those differentially expressed between tolerant
and sensitive genotypes; c) Venn diagram of miRNAs regulated under short/long exposure to cold (cold/vernalization, L2/L1 and L7/L6) in leaves,
Al (L10/L9 and L8/L9) in roots and salt (L4/L1) in leaves; d) Venn diagram of miRNAs expressed in control plants during vegetative phase under
normal conditions (control library L1), plants acclimated up to 56 days at 4°C (vernalized library L2) during vegetative phase and, plants acclimated
up to 56 days at 4°C and then transferred to normal conditions under long day photoperiod to induce flowering during the reproductive phase
(reproductive library L3). Up, up-regulated miRNAs; Dw, down-regulated miRNAs; Cold/vrn, cold and vernalization responsive miRNAs in spring
(L7/L6) and winter wheat (L7/L6), respectively; salt responsive miRNAs in winter wheat (L4/L1); Al responsive miRNAs in spring (L8/L9) and winter
(L10/L9) wheat; For tolerance, only differentially expressed miRNAs between cold (L2/L7) and Al (L10/L8) treated libraries are presented. All other
abbreviations’ are described in the legend of Figure 2. See Additional file 1: Method S1 and Additional file 2: Table S1 about libraries and
conditions and Additional file 2: Table S9 for more information about regulated miRNAs.
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translocator) in the category cell component (Additional
file 3: Figure S4b) and signal transduction (Auxin-responsive
proteins) in the category biological process (Figure 5 and
Additional file 3: Figure S6b). Consistently, enrichment is
also found for nucleus (Additional file 3: Figure S4b), pro-
tein binding activity (Additional file 3: Figure S5b), nucleo-
base containing component metabolic process and response
to endogenous stimulus (Figure 5 and Additional file 3:
Figure S6b) which are all overrepresented by auxin
responsive proteins. These results indicate that cold regulated
miRNAs may function in carbon partitioning during photo-
synthesis and in auxin-activated signaling pathways. For
miRNA groups associated with Al responses (Al5-Al6), an
enrichment is found for hydrolase activity (protein phosphat-
ase 2C, lipase), catalytic activity (glutathione peroxidase,
phenylalanine ammonia-lyase) (Additional file 3: Figure
S5b), response to endogenous stimulus (Auxin Response
Factors), DNA metabolic process (histone 4) (Figure 5



Figure 5 GO Slim enrichment for differentially expressed miRNAs in response to abiotic stress and development. Differentially expressed miRNAs with
the same or different expression patterns between plants from tolerant and sensitive genotypes under normal and abiotic stress conditions; and
between plants at vegetative and reproductive phases were classified into 24 miRNA groups. MiRNA targets are annotated to the best scoring GO Slim
terms in Biological process category. The lines are grouped according to their association to cold and vernalization (L2/L1 and L7/L6), Aluminum (L10/
L9 and L8/L9) and development (L3/L1 and L3/L2). See Additional file 2: Table S10 for more information about miRNA groups. The value in each case
indicates the number of associations miRNA-target- GO for the corresponding GO Slim. The enrichment is presented in four different colors (“brown
square symbol” high enrichment (P-value < 10−5), “orange square symbol” medium enrichment (P-value < 10−3), “light orange square symbol” low
enrichment (P-value < 0.05) and “white square symbol” no enrichment (P-value ≥ 0.05).
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and Additional file 3: Figure S6b). These results indicate
that Al-regulated miRNAs may function in regulation of
gene expression and signaling as well as plant defense
under oxidative stress. More interestingly, many targets
found for miRNA groups associated with cold (Co1,
Co2, Co4) and Al (Al1, Al2 and Al3) tolerance are
known for their function in stress adaptation. For miRNA
groups associated with cold tolerance, the groups Co1 and
Co2, showed enrichment for the GO Slim term response
to stress (phosphoglycerate mutase, Defensin-like protein
1, Universal stress protein A-like protein). In addition,
Co1 is enriched for response to abiotic stimulus (thauma-
tin-like protein, glutathione S-transferase) (Figure 5 and
Additional file 3: Figure S6b) and the group Co2 is
enriched for cell wall (Defensin-like protein, phospho-
3-sulfolactate synthase-like), nucleus (CBFIVb-B20),
hydrolase activity (Ubiquitin-like-specific protease, Serine
carboxypeptidase) and catalytic activity (Gibberellin 20
oxidase, Glyceraldehyde-3-phosphate dehydrogenase)
(Additional file 3: Figure S5b). This indicates that the
identified cold regulated miRNAs may function in pro-
teolysis, gibberellins biosynthesis and glucose metabol-
ism. The group Co3 is enriched for transporter activity
(Sodium/hydrogen exchanger) (Additional file 3: Figure
S5b) while the group Co4 is enriched for pollen-pistil
interaction (Serine/threonine-protein kinase) (Figure 5 and
Additional file 3: Figure S6b) indicating that they may also
have a function in ion transport and signaling.
Moreover, for groups associated with Al tolerance, the

most enriched GO Slim terms are mitochondrion, trans-
porter activity (Cytochrome b-c1 complex) and carbohy-
drates metabolic process (glyceraldehyde-3-phosphate
dehydrogenase) indicating that miRNAs from these groups
may mediate glycolysis and respiration process under Al
stress conditions. Enrichment is also found for the terms
catalytic activity, hydrolase activity, sequence specific tran-
scription factor activity (Additional file 3: Figure S5b), sec-
ondary metabolic process, embryo development, anatomical
structural morphogenesis and multi-organismal develop-
ment (Figure 5 and Additional file 3: Figure S6b). They are
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overrepresented by many important metabolism enzymes
involved in phenylpropanoid metabolism and ubiquitina-
tion process (phenylalanine ammonia-lyase, DEAD-box
ATP-dependent RNA helicase, Ubiquitin carboxyl-terminal
hydrolase) as well as transcription factors (Homeobox-leu-
cine zipper proteins).
Interestingly, the targets in miRNA groups associated

with development are involved in cell growth and flower-
ing. The miRNA groups associated with flowering (Dev1,
Dev2) show enrichment for the GO Slim terms protein
binding activity, sequence specific DNA transcription bind-
ing activity (MIKC-type MADS-box transcription factors),
and/or kinase activity (Serine/threonine-protein kinase)
(Additional file 3: Figure S5b). They are also enriched for
nucleobase containing compound metabolism and pollen
pistil interaction that are specifically represented by two
well characterized regulators genes (MIKC-type MADS-
box and Serine/threonine-protein kinase) (Figure 5). One
miRNA group associated with floral transition (Dev 4) is
enriched for the GO Slim terms transport and response to
endogenous stimulus, specifically represented by Auxin-
responsive proteins. Furthermore, the potential function
of ubiquitously expressed miRNA libraries was also in-
vestigated. They show significant enrichment for the
GO Slim terms thylakoid (Additional file 3: Figure S4b),
kinase activity, nucleotide binding activity (Additional
file 3: Figure S5b), and cell protein modifications (Figure 5
and Additional file 3: Figure S6b). This result indicates
that constitutively expressed miRNAs may modulate the
basic cellular functions reflecting their vital regulatory role
in other growth conditions yet to be identified in wheat.

Discussion and conclusions
The wheat miRNA pipeline
In this study, we developed a pipeline that identifies con-
served as well as clade and species-specific or young
miRNAs. This pipeline can be easily adapted for other
plant species. To predict miRNAs from NGS and
analyze their function, the steps described in Figure 1
are required. While several steps are standard in NGS
analyses [4,49,53], we improved the miRNA prediction
steps by integrating folded pre-miRNA candidates, ex-
pression profiling and functional analyses of differen-
tially expressed candidates. To address the step of
miRNA prediction, we decided to exploit two methods
with different algorithmic schemes MiPred [43] and
HHMMiR [44] to have a broad range of hairpin candi-
dates. These methods were trained on pre-miRNAs from
plants and wheat sequences available in miRBase and re-
sulted in the identification of a large number of pre-
miRNA candidates using the predictors MiPred [43] and
HHMMiR [44]. To address issues of latter methods for
the lack of consideration of mature miRNA and their
surrounding biological features, we developed a classifier
that ranked the best 35 biological features of plant miR-
NAs that was integrated into MiRdup* (Additional file 2:
Table S3). For robustness, the classifier’s models were
trained separately on three datasets (all miRBase species,
all plants and only monocots). This increases species-
specificity and allows the discovery of features that dis-
tinguish wheat miRNAs from those of other species. The
developed classifier (MiRdup*) was able to reduce the
level of false prediction obtained by MiPred [43] and
HHMMiR [44] by more than 81% (Figure 1, Additional
file 3: Figures S1 and S2) and allowed the assessment of
the position of a miRNA in a given pre-miRNA se-
quence. In addition, the combinatorial analysis between
MiRdup* and MIRcheck [45] which identifies 20-nt re-
gions of a given plant pre-miRNA using a predetermined
set of rules and constraints, show that MIRcheck is too
stringent and easily removed experimentally validated
miRNAs (Figure 3b and Additional file 3: Figures S2).
The availability of wheat EST databases and our ap-

proach enabled us to identify with confidence 199
miRNA candidates. These candidates may include
miRNA gene homeologs from the three genomes of
hexaploid wheat, or ESTs with SNP differences in differ-
ent wheat varieties. It is also reasonable to assume that
these families represent only a fraction of the total miR-
NAs that may exists in hexaploid wheat since many
small RNAs still remain unmapped to wheat sequences
or conserved miRNAs from miRBase. The availability of
the complete assembled and well-annotated hexaploid
wheat genome will help to complete the discovery of the
remaining miRNAs.
It is important to emphasize that among the pre-

dicted miRNAs, in spite of being derived from ESTs,
less than 5% of the mature miRNAs are associated
with known protein coding regions and less than
7% are related to transposable elements (Additional
file 2: Table S5a and S5b). According to Dinger et
al., [54], many transcripts are categorized as bifunc-
tional RNAs. They can be translated into protein but
also function independently as RNA. The presence of
such bifunctional RNAs challenges the assumption
that the RNA world can be neatly parsed between
mutually exclusive protein-coding and non-coding
categories.

MiRNA candidates associated with abiotic stress
responses
This study represents one of the largest de novo miR-
NAome analyses in response to different abiotic stresses
and development in hexaploid wheat. Although many
cold responsive miRNAs have been identified in spring
wheat using NGS [6], our study identified a large num-
ber of novel candidates regulated by cold, vernalization,
Al and salt with dynamic and complex expression patterns
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(Figures 3b, 4b and Additional file 2: Table S9). Several
identified miRNAs are either associated with a specific
stress or common to at least two stresses (Figures 3b and
4c). Many of their targets are known to be stress-related
genes (Figure 5 and Additional file 3: Figures S4b-6b)
commonly regulated under abiotic stresses.
Our results show that miRNAs may mediate plant re-

sponses to Al treatment by regulating expression of
stress related genes particularly those involved in auxin
signaling and fatty acid metabolism. This is consistent
with the fact that Al affects the relative abundance of
membrane lipids and the degree of fatty acid unsatur-
ation [55,56] and Auxin Response Factors (ARFs) that
are known to inhibit root development in response to Al
toxicity [57]. In addition, the experimentally validated
apMir_22246 (which corresponds to tae-miR160) is reg-
ulated by Al exposure (Figure 3c) and targets specifically
ARFs. Many ARF members are known to be regulated
by miR167 and miR160 and to play regulatory roles in
adventitious rooting [58], supporting the possible role of
apMir_22246 in root development under Al treatment.

MiRNA candidates associated with cold responses and
freezing tolerance
Our data indicate that cold regulates the expression of
several miRNAs in spring as well as in winter wheat
(Figures 3b, 4b and c). Four miRNA groups associated with
cold tolerance (Additional file 2: Table S10) target a set of
cold regulated genes known to be involved in freezing toler-
ance including the transcription factors CBFs, dehydrins,
DEAD-box RNA helicases, thaumatin-like protein [59-62].
Interestingly, many candidate miRNA target genes related
to the ICE1–CBF major pathway that regulates freezing tol-
erance in cold hardy plants. This includes the targets
DEAD-box ATP-dependent RNA helicase 12, CBF and
dehydrin (Additional file 2: Table S7). Results from our pre-
vious studies demonstrated that genes related to the ICE1–
CBF pathway play a critical role in freezing tolerance in
hexaploid wheat [63]. Here we show that the miRNA
candidate apMir_16808 is regulated in response to cold
(Figure 3b), and target the cold responsive genes dehydrins
(Table 2) [59,62]. The candidate apMir_19532 from miRNA
group associated with cold tolerance target CBFIVb-B20
gene (Additional file 2: Table S7). These results suggest that
these miRNAs may contribute to freezing tolerance by
regulating cold-regulated genes belonging to the CBF regu-
lon in winter wheat.

Predicted miRNA target genes common in regulating
several stresses
Plants evolved common regulatory mechanisms to adapt
to environmental stresses such as oxidative stress com-
monly induced by both cold and Al. Our results show that
many of the identified abiotic stress responsive miRNAs
exhibited a common stress expression pattern (Figures 3b
and c and 4c). For instance, the expression of the new
member of miR395 family, miR395-21 corresponding to
apMir_20968, is commonly regulated in response to cold
and Al stress (Figure 3c) indicating that miR395 is not
specific to sulfate starvation as previously reported in Ara-
bidopsis and rice [49,64]. Zhao et al., [65] also reported
that miR395 is involved in phosphate homeostasis in
wheat. This indicates that miR395 mediates not only plant
response to sulfate deficiency but also may mediate re-
sponses to other nutrients that are imbalanced under abi-
otic stress conditions. Taken together, our results indicate
that miR395 would play a common role in plant nutrient
homeostasis under abiotic stress conditions. In agreement
with previous suggestions, our results indicate that miR-
NAs coordinate crosstalk among different nutrient defi-
ciencies. This is the first indication that crosstalk between
cold, Al stress and plant nutrients could be regulated by
miRNAs. Moreover, we show that the miRNA candidate
apMir_20602 is also commonly regulated under cold, salt
and Al (Figure 4b) and targets glutathione peroxidase
(Table 2). Recent findings showed that human miRNAs
regulate glutathione peroxidase expression to maintain
redox homeostasis [66]. This supports the possible role of
apMir_20602 in mediating crosstalk between abiotic stress
responses by regulating glutathione metabolism.

Wheat vernalization responsive miRNAs associated with
floral transition and flowering
In this study, we investigate the role of miRNAs during
the transition from the vegetative to the reproductive
phase, and during flowering in winter wheat that requires
vernalization to flower. We found that among develop-
mentally responsive miRNAs, many candidates target cold
responsive genes known for their function in flowering
transition and flower development (Additional file 2: Table
S7). For instance, the candidate apMir_19892 correspond-
ing to hvu-miR444b (Additional file 4: data SD1) could
target many MIKC-type MADS-box transcription factors,
the homologs of TaAGL17 and OsMADS57. In wheat,
MIKC-type MADS-box transcription factors control
flower development and morphogenesis [67]. In barley,
this target contains both the target site for miR444b and
the precursor sequence for miR444a [68]). In rice,
OsMADS57 is involved in axillary bud development and
regulation of tillering through down-regulation of
miR444a [69]. Since the miRNA variants from miR444
family are functional, and MADS-box genes are collect-
ively regulated by the miR444 family [70], we suggest
that apMir_19892 may mediate flowering through the
regulation of MIKC-type MADS-box transcription fac-
tor gene expression. ApMir_19532 target genes encod-
ing Ubiquitin-like-specific protease ESD4 known to
regulate plant responses to cold and the time of flower
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initiation [71,72]. In addition, apMir_20860 corre-
sponding to miR159 (Additional file 4: data SD1) are
involved in promotion of floral transition in many spe-
cies. In ornamental plants, miR159-regulated GAMYB ex-
pression is an effective pathway of flowering time control
[73]. This suggests that apMir_19532 and apMir_20860
may mediate flowering time in wheat through the regula-
tion of Ubiquitin-like-specific protease ESD4 and GAMYB
gene expression.

Methods
Plant material and small RNAs isolation
In this study, three genotypes of hexaploid wheat (Triticum
aestivum L. 2n = 6x = 42, AABBDD), one spring genotype
(cv Bounty, cold and Al sensitive) and two winter genotypes
(cv Clair, cold tolerant and Atlas66, Al tolerant genotype)
were used to construct ten different small RNA libraries
from plants in vegetative and/or reproductive stages and/or
exposed to different stress treatments or under normal
conditions (Additional file 1: Method S1 and Additional
file 2: Table S1). To identify miRNAs that are associated
with different development stages, tissues from both
vegetative and reproductive phases were used. Vegetative
phase samples include leaves and crown from the aerial
part of plants. Reproductive phase samples include leaves
at flag leaf stage, developing spikes with sizes ranging from
2 to 110 mm, and spikes partially and completely-opened
with and without pollen. We used also root tips to identify
miRNAs associated with Al and salt stress, and aerial parts
including leaves and crown to identify miRNAs associated
with cold and salt. In addition, we used different genotypes
of winter (tolerant) and spring (sensitive) wheat to identify
miRNAs associated with Al and freezing tolerance. Small
RNA extraction was initiated from 200 mg of a mixture of
leaves, stem or root tip tissues from 10 to 100 seedlings
for each time point. Control and treated plants were
sampled at the same time of the day for each time point
(except for the first day where a few samples were
taken at short time points) as described in (Additional
file 1: Method S1 and Additional file 2: Table S1). Small
RNAs (below 200 nt) were isolated from each sample
using the mirVana miRNA Isolation Kit (Ambion Inc.
US). MiRNAs (small RNAs below 40 nt) from each
time point were isolated using the flashPAGE fraction-
ation kit (Ambion) (Additional file 1: Method S1 and
Additional file 2: Table S1), and then purified using the
flashPAGE Reaction Clean-up kit (Ambion) according to
the manufacturer’s protocols. Their integrity was assessed
using a DNA 1000 LabChip on an Agilent 2100 Bioanalyzer
(Santa Clara, CA, USA).

MiRNA libraries construction and sequencing
Twenty five nanograms of purified miRNAs from each time
point of a given condition (Additional file 1: Method S1
and Additional file 2: Table S1) were pooled and used as a
template to produce the corresponding miRNA library.
MiRNAs were tagged with a barcode system containing ten
unique and specific amplification primers (1 barcode/
library) and ten cDNA libraries were produced using
the SREK kit (small RNA expression Kit, Ambion) ac-
cording to the manufacturer's protocol. The libraries
were sequenced on the SOLiD Analyzer according to
the standard protocol (V2.1 Applied Biosystems).

Experimental validation of predicted miRNAs
For each library, identical amounts of plant tissues from
each time point were ground and mixed with TRIzol Re-
agent (Life Technologies). The same extract volume from
each time point of each library was pooled to isolate small
RNAs using the mirVana miRNA Isolation Kit. Five mi-
crograms of small RNAs from each library were analyzed
by northern blot [74]. The experiment was repeated at
least twice for each selected probe. The oligonucleotide
probes are presented in Additional file 2: Table S11.

Identification and extraction of potential pre-miRNA
candidates from sequenced small RNAs
From the 89 million reads obtained from the ten libraries,
we first removed reads that have low quality scores as
recommended for SOLID sequencing [39,75] (Additional
file 2: Table S2). After adapter removal using the program
cutadapt v0.9 [76], small RNAs between 18 and 30 nt were
mapped to ESTs with the MAQ v07.1 program [77] allow-
ing a maximum of two mismatches (Additional file 1:
Method S3). Then, sequences with low complexity or
containing repeats were filtered out using RepeatMasker
v3.2.9 [78] with RepBase15.09 and Repeatmasker-Libraries-
20130422 [79], and a slow search method against Triticum
aestivum and Oryza sativa. For each mapped EST, we con-
sidered two sequences that could include a potential pre-
miRNA candidate as follows: 20 nt before the start and
160 nt after the end of the mapping were extracted from
both EST strands.
The secondary structures of the extracted sequences

(pri-miRNA) were folded with RNAfold from ViennaRNA
v1.8.4 package [80] to identify those having a hairpin-like
shape, one of the fundamental characteristics of pre-
miRNAs. Then, these sequences were submitted to
two pre-miRNA predictors using different algorithmic
schemes, HHMMiR [44] and MiPred [43], which were
trained with pre-miRNAs of all cloned or sequenced
miRNAs from miRBase [30]. Finally, to identify con-
served miRNAs, we performed a blastn of small RNAs
with more than 100 reads in at least one library against
miRBase (V21) [81] with a word_size 7, maximum e-
value 0.1, percentage identity 80, gap open penalty 5,
gap extension penalty 2, match score 1, mismatch score
−2, filter low complexity. We restricted the blast results
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as follows: query coverage of 90%, subject coverage of
90%, with no gap allowed.
Filtering false positive pre-miRNAs
We adapted our previously published machine learning
classifier [41] to the best plant features associated with
the position of miRNA-miRNA* duplex in the pre-
miRNA (Additional file 1: Method S4), and we named
this version MiRdup*. The latter differs from the original
one on the 35 retained features (Additional file 2: Table
S3) that are relevant for plants and has been trained on
all experimental (cloned or sequenced) miRNAs from
miRBase subdivided in three datasets (all species, all
plants and only monocots). This classifier computes a
score of prediction scaled between 0 and 100 (more evi-
dence). The potential pre-miRNAs from MiPred or
HHMMiR that obtained a MiRdup* classification score
higher than 90 and with miRNA read abundance above
100 in at least one library were selected as candidates. In
addition, to help identifying the potential functional
miRNAs among several candidates, we applied the re-
laxed expression rules derived from the update of the
specific criteria for plant miRNA annotation reported by
Meyers et al., [42]. In parallel, we applied MIRcheck
[45], a well-known tool for plant miRNA identification,
on the overall predicted miRNAs to compare the differ-
ences with MiRdup*. A combinatorial analysis between
the two tools is provided (Additional file 3: Figures S1
and S2). Then, the pre-miRNAs were blasted against
TREP database to identify miRNAs that originate from
transposable elements (Additional file 2: Table S5a). The
e-value threshold used is 5.0E-05 and Hit Coverage
(HC) ≥ 85 and percentage of identity ≥80. We performed
also a blastx of ESTs producing the identified pre-
miRNAs against proteins coding sequences from protein
plant database with default parameters (Additional file 2:
Table S5b). The threshold to include a blast hit of an
EST into a given protein core is an e-value lower than
1.00E-20 and query coverage or hit coverage higher than
85% and percentage of identity higher than 75%.
Statistical analyses of the abundance of potential miRNAs
To quantify and compare sequence abundance across
different libraries, raw read counts were normalized
using rpm (reads per million). Sequences with read
counts lower than 100 in all libraries are removed. Sig-
nificance level of the difference of small RNA between
two libraries was analyzed using a corrected Z–Score
method as described in Kal et al., [82]. An adjustment
for multiple comparisons based on the false discovery
rate (FDR) [83] was performed (FDR < 5%). The small
RNAs with fold change lower than 0.5 or higher than
2.0 were retained.
MiRNA target analyses and GO enrichments
MiRNA target genes were identified using the FASTA
engine of Tapir v1.0 program, with a stringent maximum
score of three and minimum free energy ≥ 0.7 [84] ex-
cluding ESTs annotated as unknown proteins. For the
obtained and annotated target genes, we retrieved their
classification in Gene Ontology (GO) through the GO
Slim viewer on AgBase webserver [85]. The GO Slim en-
richments were performed using the standard hypergeo-
metric test. The wheat genome GO Slim background
was constructed taking into account the overall GO
Slims covered by the 127,039 UniRefs id retrieved from
all the collected ESTs Database. The GO Slim terms
with P-value < 0.05 were considered as enriched. The
same procedure was applied for the targets of the differ-
entially expressed miRNAs. Unlike the overall analysis,
the GO Slim background considered in each condition
was computed from only the GO Slim of the identified
target genes present in the two compared libraries from
sensitive and tolerant genotypes. For functional analysis,
we investigate the potential function of all identified
miRNAs in the 10 investigated conditions (10 libraries)
for miRNAs having at least 100 reads in at least one se-
quenced library. (Additional file 4: data SD3).

Availability of supporting data
All the predicted and conserved miRNAs from this
study, the published miRNAs from the literature, the
small RNA expression profiles are provided at the fol-
lowing database http://wheat.bioinfo.uqam.ca.
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exhaustive description of different section of the methods.

Additional file 2: Supplementary Tables from S1 to S11; Provides
supplementary Tables of the manuscript and their associated
legends. Long Tables are given xls files embedded in the zip but their
legends remain in the main supplementary table files named < Tables
S1to5 and S8to11.docx >.

Additional file 3: Supplementary Figures from S1 to S7; Provides
list of supplementary figures.

Additional file 4: Supporting Data from S1 to S3; Provides
supporting Data of the manuscript and their associated legends.
Their legends are in the main supplementary files named. < Supporting
Data_legendeSD1toSD3.docx>. The three datasets present an elegant
representation of the miRNA within their coexpressed small RNAs, their
percentage of coverage and the list of miRNA with more than 100 reads.

Additional file 5: Appendix-GO enrichment all targets.pdf. Gene
ontology enrichment for the predicted target genes; Description of the
data: Summary of all the enriched Go terms.
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