12,686 research outputs found

    Reproducing spin lattice models in strongly coupled atom-cavity systems

    Full text link
    In an array of coupled cavities where the cavities are doped with an atomic V-system, and the two excited levels couple to cavity photons of different polarizations, we show how to construct various spin models employed in characterizing phenomena in condensed matter physics, such as the spin-1/2 Ising, XX, Heisenberg, and XXZ models. The ability to construct networks of arbitrary geometry also allows for the simulation of topological effects. By tuning the number of excitations present, the dimension of the spin to be simulated can be controlled, and mixtures of different spin types produced. The facility of single-site addressing, the use of only the natural hopping photon dynamics without external fields, and the recent experimental advances towards strong coupling, makes the prospect of using these arrays as efficient quantum simulators promising.Comment: 4 pages, 3 figures. v3: References adde

    Quantum Critical Point and Entanglement in a Matrix Product Ground State

    Get PDF
    In this paper, we study the entanglement properties of a spin-1 model the exact ground state of which is given by a Matrix Product state. The model exhibits a critical point transition at a parameter value a=0. The longitudinal and transverse correlation lengths are known to diverge as a tends to zero. We use three different entanglement measures S(i) (the one-site von Neumann entropy), S(i,j) (the two-body entanglement) and G(2,n) (the generalized global entanglement) to determine the entanglement content of the MP ground state as the parameter a is varied. The entanglement length, associated with S(i,j), is found to diverge in the vicinity of the quantum critical point a=0. The first derivative of the entanglement measure E (=S(i), S(i,j)) w.r.t. the parameter a also diverges. The first derivative of G(2,n) w.r.t. a does not diverge as a tends to zero but attains a maximum value at a=0. At the QCP itself all the three entanglement measures become zero. We further show that multipartite correlations are involved in the QPT at a=0.Comment: 14 pages, 6 figure

    Weighted Scale-free Networks in Euclidean Space Using Local Selection Rule

    Full text link
    A spatial scale-free network is introduced and studied whose motivation has been originated in the growing Internet as well as the Airport networks. We argue that in these real-world networks a new node necessarily selects one of its neighbouring local nodes for connection and is not controlled by the preferential attachment as in the Barab\'asi-Albert (BA) model. This observation has been mimicked in our model where the nodes pop-up at randomly located positions in the Euclidean space and are connected to one end of the nearest link. In spite of this crucial difference it is observed that the leading behaviour of our network is like the BA model. Defining link weight as an algebraic power of its Euclidean length, the weight distribution and the non-linear dependence of the nodal strength on the degree are analytically calculated. It is claimed that a power law decay of the link weights with time ensures such a non-linear behavior. Switching off the Euclidean space from the same model yields a much simpler definition of the Barab\'asi-Albert model where numerical effort grows linearly with NN.Comment: 6 pages, 6 figure

    On the normalization of Killing vectors and energy conservation in two-dimensional gravity

    Get PDF
    We explicitly show that, in the context of a recently proposed 2D dilaton gravity theory, energy conservation requires the ``natural'' Killing vector to have, asymptotically, an unusual normalization. The Hawking temperature THT_H is then calculated according to this prescription.Comment: 7 pages, Latex, no figure

    Teleportation as a Depolarizing Quantum Channel, Relative Entropy and Classical Capacity

    Get PDF
    We show that standard teleportation with an arbitrary mixed state resource is equivalent to a generalized depolarizing channel with probabilities given by the maximally entangled components of the resource. This enables the usage of any quantum channel as a generalized depolarizing channel without additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation success in terms of the relative entropy and this quantification can be related to a classical capacity.Comment: Version published in Phys. Rev. Let

    Bell measurements as a witness of a dualism in entanglement

    Full text link
    We show how a property of dualism, which can exist in the entanglement of identical particles, can be tested in the usual photonic Bell measurement apparatus with minor modifications. Two different sets of coincidence measurements on the same experimental setup consisting of a Hong-Ou-Mandel interferometer demonstrate how the same two-photon state can emerge entanglement in the polarization or the momentum degree of freedom depending on the dynamical variables used for labeling the particles. Our experiment demonstrates how the same source can be used as both a polarization entangled state, as well as a dichotomic momentum entangled state shared between distant users Alice and Bob in accordance to which sets of detectors they access. When the particles become distinguishable by letting the information about one of the variables to be imprinted in yet another (possibly inaccessible) system or degree of freedom, the feature of dualism is expected to vanish. We verify this feature by polarization decoherence (polarization information in environment) or arrival time difference, which both respectively destroy one of the dual forms of entanglement.Comment: 5 pages, 4 figure

    Entanglement and dynamics of spin-chains in periodically-pulsed magnetic fields: accelerator modes

    Get PDF
    We study the dynamics of a single excitation in a Heisenberg spin-chain subjected to a sequence of periodic pulses from an external, parabolic, magnetic field. We show that, for experimentally reasonable parameters, a pair of counter-propagating coherent states are ejected from the centre of the chain. We find an illuminating correspondence with the quantum time evolution of the well-known paradigm of quantum chaos, the Quantum Kicked Rotor (QKR). From this we can analyse the entanglement production and interpret the ejected coherent states as a manifestation of so-called `accelerator modes' of a classically chaotic system.Comment: 5 pages, 2 figures; minor corrections, tidied presentatio

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(55)/2=2.1755\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table
    corecore