6,606 research outputs found

    Large-mode-number magnetohydrodynamic instability driven by sheared flows in a tokamak plasma with reversed central shear

    Full text link
    The effect of a narrow sub-Alfvenic shear flow layer near the minimum q_min of the tokamak safety factor profile in a configuration with reversed central shear is analyzed. Sufficiently strong velocity shear gives rise to a broad spectrum of fast growing Kelvin-Helmholtz (KH)-like ideal magnetohydrodynamic (MHD) modes with dominant mode numbers m,n ~ 10. Nonlinear simulations with finite resistivity show magnetic reconnection near ripples caused by KH-like vortices, the formation of turbulent structures, and a flattening of the flow profile. The KH modes are compared to double tearing modes (DTM) which dominate at lower shearing rates. The possible application of these results in tokamaks with internal transport barrier is discussed.Comment: 4 pages, 4 figure

    Neutral helium spectral lines in dense plasmas

    Get PDF

    Evolution of the neutron quasi-elastic scattering through the ferroelectric phase transition in 93%PbZn1/3_{1/3}Nb2/3_{2/3}O3_3 - 7% PbTiO3_3

    Get PDF
    We show that the neutron diffuse scattering in relaxor ferroelectric (1-x)PbZn1/3_{1/3}Nb2/3_{2/3}O3_{3} - x PbTiO3_{3} (x=0.07) consists of two components. The first component is strictly elastic but extended in q-space and grows below 600 K. The second component, that was not reported before for the (1-x)PbZn1/3_{1/3}Nb2/3_{2/3}O3_{3} - x PbTiO3_{3} (x=0.07) relaxor ferroelectrics, is quasi-elastic with a line-width that has a similar temperature dependence as the width of the central peak observed by Brillouin spectroscopy. The temperature dependence of the susceptibility of the quasi-elastic scattering has a maximum at the ferroelectric transition

    Dynamic Kosterlitz-Thouless transition in 2D Bose mixtures of ultra-cold atoms

    Full text link
    We propose a realistic experiment to demonstrate a dynamic Kosterlitz-Thouless transition in ultra-cold atomic gases in two dimensions. With a numerical implementation of the Truncated Wigner Approximation we simulate the time evolution of several correlation functions, which can be measured via matter wave interference. We demonstrate that the relaxational dynamics is well-described by a real-time renormalization group approach, and argue that these experiments can guide the development of a theoretical framework for the understanding of critical dynamics.Comment: 5 pages, 6 figure

    Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains

    Full text link
    We investigate the transport of excitations through a chain of atoms with non-local dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of non-trivial dissipation, correlations and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.Comment: 5 page

    Relaxation of an isolated dipolar-interacting Rydberg quantum spin system

    Full text link
    How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we employ different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.Comment: 6 pages, 3 figure

    Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays

    Full text link
    Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 < -10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.Comment: 4 revtex pages, 3 postscript figures included, version published in PR
    corecore