451 research outputs found

    Time-Symmetrized Kustaanheimo-Stiefel Regularization

    Full text link
    In this paper we describe a new algorithm for the long-term numerical integration of the two-body problem, in which two particles interact under a Newtonian gravitational potential. Although analytical solutions exist in the unperturbed and weakly perturbed cases, numerical integration is necessary in situations where the perturbation is relatively strong. Kustaanheimo--Stiefel (KS) regularization is widely used to remove the singularity in the equations of motion, making it possible to integrate orbits having very high eccentricity. However, even with KS regularization, long-term integration is difficult, simply because the required accuracy is usually very high. We present a new time-integration algorithm which has no secular error in either the binding energy or the eccentricity, while allowing variable stepsize. The basic approach is to take a time-symmetric algorithm, then apply an implicit criterion for the stepsize to ensure strict time reversibility. We describe the algorithm in detail and present the results of numerical tests involving long-term integration of binaries and hierarchical triples. In all cases studied, we found no systematic error in either the energy or the angular momentum. We also found that its calculation cost does not become higher than those of existing algorithms. By contrast, the stabilization technique, which has been widely used in the field of collisional stellar dynamics, conserves energy very well but does not conserve angular momentum.Comment: figures are available at http://grape.c.u-tokyo.ac.jp/~funato/; To appear in Astronomical Journal (July, 1996

    Evolution of Massive Black Hole Binaries

    Full text link
    We present the result of large-scale N-body simulations of the stellar-dynamical evolution of a massive black-hole binary at the center of a spherical galaxy. We focus on the dependence of the hardening rate on the relaxation timescale of the parent galaxy. A simple theoretical argument predicts that a binary black hole creates the ``loss cone'' around it. Once the loss cone is formed, the hardening rate is determined by the rate at which field stars diffuse into the loss cone. Therefore the hardening timescale becomes proportional to the relaxation timescale. Recent N-body simulations, however, have failed to confirm this theory and various explanations have been proposed. By performing simulations with sufficiently large N (up to 10610^6) for sufficiently long time, we found that the hardening rate does depend on N. Our result is consistent with the simple theoretical prediction that the hardening timescale is proportional to the relaxation timescale. This dependence implies that most massive black hole binaries are unlikely to merge within the Hubble time through interaction with field stars and gravitational wave radiation alone.Comment: Reviced version accepted for publication in ApJ. Scheduled to appear in the February 10, 2004 issu

    Multimedia based E-learning tools for dynamic modeling of dc-dc converters

    Get PDF
    Author name used in this publication: C. K. TseRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    The Orbit, Mass, and Albedo of Transneptunian Binary 1999 RZ253

    Full text link
    We have observed 1999 RZ253 with the Hubble Space Telescope at seven separate epochs and have fit an orbit to the observed relative positions of this binary. Two orbital solutions have been identified that differ primarily in the inclination of the orbit plane. The best fit corresponds to an orbital period, P=46.263 +0.006/-0.074 days, semimajor axis a=4,660 +/-170 km and orbital eccentricity e=0.460 +/-0.013 corresponding to a system mass m=3.7 +/-0.4 x10^18 kg. For a density of rho = 1000 kg m^-3 the albedo at 477 nm is p = 0.12 +/-0.01, significantly higher than has been commonly assumed for objects in the Kuiper Belt. Multicolor, multiepoch photometry shows this pair to have colors typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the range between 475 and 775 nm. Photometric variations at the four epochs we observed were as large as 12 +/-3% but the sampling is insufficient to confirm the existence of a lightcurve

    On relaxation processes in collisionless mergers

    Get PDF
    We analyze N-body simulations of halo mergers to investigate the mechanisms responsible for driving mixing in phase-space and the evolution to dynamical equilibrium. We focus on mixing in energy and angular momentum and show that mixing occurs in step-like fashion following pericenter passages of the halos. This makes mixing during a merger unlike other well known mixing processes such as phase mixing and chaotic mixing whose rates scale with local dynamical time. We conclude that the mixing process that drives the system to equilibrium is primarily a response to energy and angular momentum redistribution that occurs due to impulsive tidal shocking and dynamical friction rather than a result of chaotic mixing in a continuously changing potential. We also analyze the merger remnants to determine the degree of mixing at various radii by monitoring changes in radius, energy and angular momentum of particles. We confirm previous findings that show that the majority of particles retain strong memory of their original kinetic energies and angular momenta but do experience changes in their potential energies owing to the tidal shocks they experience during pericenter passages. Finally, we show that a significant fraction of mass (~ 40%) in the merger remnant lies outside its formal virial radius and that this matter is ejected roughly uniformly from all radii outside the inner regions. This highlights the fact that mass, in its standard virial definition, is not additive in mergers. We discuss the implications of these results for our understanding of relaxation in collisionless dynamical systems.Comment: Version accepted for Publication in Astrophysical Journal, March 20, 2007, v685. Minor changes, latex, 14 figure

    Evolution of Massive Blackhole Triples I -- Equal-mass binary-single systems

    Full text link
    We present the result of NN-body simulations of dynamical evolution of triple massive blackhole (BH) systems in galactic nuclei. We found that in most cases two of the three BHs merge through gravitational wave (GW) radiation in the timescale much shorter than the Hubble time, before ejecting one BH through a slingshot. In order for a binary BH to merge before ejecting out the third one, it has to become highly eccentric since the gravitational wave timescale would be much longer than the Hubble time unless the eccentricity is very high. We found that two mechanisms drive the increase of the eccentricity of the binary. One is the strong binary-single BH interaction resulting in the thermalization of the eccentricity. The second is the Kozai mechanism which drives the cyclic change of the inclination and eccentricity of the inner binary of a stable hierarchical triple system. Our result implies that many of supermassive blackholes are binaries.Comment: 20 pages, 12 figure

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg
    corecore