982 research outputs found

    Measurability of kinetic temperature from metal absorption-line spectra formed in chaotic media

    Get PDF
    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent Entropy-Regularized chi^2-Minimization [ERM] to estimate the model parameters. The procedure is tested using synthetic spectra of CII, SiII and FeII ions. The comparison with the standard Voigt fitting analysis is performed and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures which are not physical. We also successfully analyze Keck telescope spectra of CII1334 and SiII1260 lines observed at the redshift z = 3.572 toward the quasar Q1937--1009 by Tytler {\it et al.}.Comment: 25 pages, 6 Postscript figures, aaspp4.sty file, submit. Ap

    Electron Acceleration and Time Variability of High Energy Emission from Blazars

    Full text link
    Blazars are known to emit a broad band emission from radio to gamma-rays with rapid time variations, particularly, in X- and gamma-rays. Synchrotron radiation and inverse Compton scattering are thought to play an important role in emission and the time variations are likely related to the acceleration of nonthermal electrons. As simultaneous multiwavelength observations with continuous time spans are recently available, some characteristics of electron acceleration are possibly inferred from the spectral changes of high energy emission. In order to make such inferences, we solve the time-dependent kinetic equations of electrons and photons simultaneously using a simple model for electron acceleration. We then show how the time variations of emission are dependent on electron acceleration. We also present a simple model for a flare in X-rays and TeV gamma-rays by temporarily changing the acceleration timescale. Our model will be used, in future, to analyze observed data in detail to obtain information on electron acceleration in blazars.Comment: 24 pages, 12 figures, accepted by the Astrophysical Journa

    The X-ray Jet in Centaurus A: Clues on the Jet Structure and Particle Acceleration

    Full text link
    We report detailed studies of the X-ray emission from the kpc scale jet in the nearest active galaxy, Cen A. 41 compact sources were found within the jet, 13 of which were newly identified. We construct the luminosity function for the detected jet-knots and argue that the remaining emission is most likely to be truly diffuse, rather than resulting from the pile-up of unresolved faint knots. The transverse jet profile reveals that the extended emission has the intensity peak at the jet boundaries. We note that limb-brightened jet morphologies have been observed previously at radio frequencies in some jet sources, but never so clearly at higher photon energies. Our result therefore supports a stratified jet model, consisting of a relativistic outflow including a boundary layer with a velocity shear. In addition, we found that the X-ray spectrum of the diffuse component is almost uniform across and along the jet. We discuss this spectral behavior within a framework of shock and stochastic particle acceleration processes. We note some evidence for a possible spectral hardening at the outer sheath of the jet. Due to the limited photon statistics of the present data, further deep observations of Cen A are required to determine the reality of this finding, however we note that the existence of the hard X-ray features at outer jet boundaries would provide an important challenge to theories for the evolution of ultra-relativistic particles within the jets.Comment: 27page, 8 figures, ver2, accepted for publication in the Ap

    Compton scattering in the Klein-Nishina Regime Revisited

    Full text link
    In blazars such as 3C 279, GeV gamma-rays are thought to be produced by inverse Compton scattering of soft photons injected from external sources into the jet. Because of the large bulk Lorentz factor of the jet, the energy of soft photons is Doppler shifted in the comoving frame of the jet, and the scattering is likely to occur in the Klein-Nishina regime. Although the Klein-Nishina effects are well known, the properties of the electron and emission spectra have not been studied in detail in the environment of blazars. We solve the kinetic equation of electrons with the spatial escape term of the electrons to obtain the electron energy spectrum in the jet and calculated the observed emission spectrum. In calculations of the Compton losses in the Klein-Nishina regime, we use the discrete loss formalism to take into account the significant energy loss in a single scattering. Although the scattering cross section decreases because of the Klein-Nishina effects, ample gamma rays are emitted by inverse Compton scattering. When the injection spectrum of electrons obeys a power law, the electron spectrum does not follow a broken power law, as a result of the Klein-Nishina effects, and a large number of high-energy electrons remain in the emitting region.Comment: 10 pages, 9 figure

    Energetics of Tev Blazars and Physical Constraints on their Emission Regions

    Full text link
    Using multi-frequency spectra from TeV blazars in quiescent states, we obtain the physical parameters of the emission region of blazars within the framework of the one-zone synchrotron self-Compton (SSC) model. We numerically calculate the steady-state energy spectra of electrons by self-consistently taking into account the effects of radiative cooling with a proper account of the Klein-Nishina effects. Here electrons are assumed to be injected with a power-law spectrum and to escape on a finite time scale, which naturally leads to the existence of a break energy scale. Although we do not use time variabilities but utilize a model of electron escape to constrain the size of the emission region, the resultant size turns out to be similar to that obtained based on time variabilities. Through detailed comparison of the predicted emission spectra with observations, we find that for Mrk 421, Mrk 501, and PKS 2155--304, the energy density of relativistic electrons is about an order of magnitude larger than that of magnetic fields with an uncertainty within a factor of a few.Comment: Accepted for publication in Ap

    Towards Semi-Markov Model-based Dependability Evaluation of VM-based Multi-Domain Service Function Chain

    Full text link
    In NFV networks, service functions (SFs) can be deployed on virtual machines (VMs) across multiple domains and then form a service function chain (MSFC) for end-to-end network service provision. However, any software component in a VM-based MSFC must experience software aging issue after a long period of operation. This paper quantitatively investigates the capability of proactive rejuvenation techniques in reducing the damage of software aging on a VM-based MSFC. We develop a semi-Markov model to capture the behaviors of SFs, VMs and virtual machine monitors (VMMs) from software aging to recovery under the condition that failure times and recovery times follow general distributions. We derive the formulas for calculating the steady-state availability and reliability of the VM-based MSFC composed of multiple SFs running on VMs hosted by VMMs. Sensitivity analysis is also conducted to identify potential dependability bottlenecks

    Lieb-Thirring Bound for Schr\"odinger Operators with Bernstein Functions of the Laplacian

    Get PDF
    A Lieb-Thirring bound for Schr\"odinger operators with Bernstein functions of the Laplacian is shown by functional integration techniques. Several specific cases are discussed in detail.Comment: We revised the first versio

    The D/H ratio at z = 3.57 toward Q 1937-1009

    Get PDF
    Deuterium abundance re-measurements by Burles and Tytler (1998; hereafter BT) yielded D/H = (3.3 +/- 0.3) 10^{-5} and the robust upper limit D/H < 3.9 10^{-5} from the z_a = 3.572 system toward Q1937-1009. In this new analysis BT adopted multicomponent microturbulent models together with the possibility to vary freely the local continuum level around each HI line to improve the fit. The procedure failed, however, to fit adequately D Ly-beta without recourse to an additional H Ly-alpha contamination at the position of D Ly-beta. We show that this obstacle may be successfully overcome within the framework of the mesoturbulent model accounting (in contrast to the microturbulent approximation) for a correlated structure of the large scale velocity field. Using the same observational data and the original continuum as determined by Tytler et al. (1996), we obtained good fits. The one-component mesoturbulent models provide D/H in the range (3.2 - 4.8) 10^{-5} and the total hydrogen column density N(HI) = (5.6 - 7.0) 10^{17} cm^{-2}. This result is consistent with that found by us from the z_a = 2.504 and z_a = 0.701 systems toward Q1009+2956 and Q1718+4807, respectively. The range for D/H common to all three analyses is D/H = (4.1 - 4.6) 10^{-5}. This value is consistent with standard big bang nucleosynthesis [SBBN] if the baryon-to-photon ratio, \eta, is in the range 4.2 10^{-10} <= \eta <= 4.6 10^{-10}, implying 0.0155 <= \Omega_b h^2_{100} <= 0.0167.Comment: 8 pages, 2 Postscript figures, aaspp4.sty file, submit. ApJ Let
    corecore