77 research outputs found

    SH3 Domain-Mediated Recruitment of Host Cell Amphiphysins by Alphavirus nsP3 Promotes Viral RNA Replication

    Get PDF
    Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication

    Protein Expression Redirects Vesicular Stomatitis Virus RNA Synthesis to Cytoplasmic Inclusions

    Get PDF
    Positive-strand and double-strand RNA viruses typically compartmentalize their replication machinery in infected cells. This is thought to shield viral RNA from detection by innate immune sensors and favor RNA synthesis. The picture for the non-segmented negative-strand (NNS) RNA viruses, however, is less clear. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we examined the location of the viral replication machinery and RNA synthesis in cells. By short-term labeling of viral RNA with 5β€²-bromouridine 5β€²-triphosphate (BrUTP), we demonstrate that primary mRNA synthesis occurs throughout the host cell cytoplasm. Protein synthesis results in the formation of inclusions that contain the viral RNA synthesis machinery and become the predominant sites of mRNA synthesis in the cell. Disruption of the microtubule network by treatment of cells with nocodazole leads to the accumulation of viral mRNA in discrete structures that decorate the surface of the inclusions. By pulse-chase analysis of the mRNA, we find that viral transcripts synthesized at the inclusions are transported away from the inclusions in a microtubule-dependent manner. Metabolic labeling of viral proteins revealed that inhibiting this transport step diminished the rate of translation. Collectively those data suggest that microtubule-dependent transport of viral mRNAs from inclusions facilitates their translation. Our experiments also show that during a VSV infection, protein synthesis is required to redirect viral RNA synthesis to intracytoplasmic inclusions. As viral RNA synthesis is initially unrestricted, we speculate that its subsequent confinement to inclusions might reflect a cellular response to infection

    Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells

    Get PDF
    Infection of BHK cells by Sindbis virus (SV) gives rise to a profound inhibition of cellular protein synthesis, whereas translation of viral subgenomic mRNA that encodes viral structural proteins, continues for hours. To gain further knowledge on the mechanism by which this subgenomic mRNA is translated, the requirements for some initiation factors (eIFs) and for the presence of the initiator AUG were examined both in infected and in uninfected cells. To this end, BHK cells were transfected with different SV replicons or with in vitro made SV subgenomic mRNAs after inactivation of some eIFs. Specifically, eIF4G was cleaved by expression of the poliovirus 2A protease (2Apro) and the alpha subunit of eIF2 was inactivated by phosphorylation induced by arsenite treatment. Moreover, cellular location of these and other translation components was analyzed in BHK infected cells by confocal microscopy. Cleavage of eIF4G by poliovirus 2Apro does not hamper translation of subgenomic mRNA in SV infected cells, but bisection of this factor blocks subgenomic mRNA translation in uninfected cells or in cell-free systems. SV infection induces phosphorylation of eIF2Ξ±, a process that is increased by arsenite treatment. Under these conditions, translation of subgenomic mRNA occurs to almost the same extent as controls in the infected cells but is drastically inhibited in uninfected cells. Notably, the correct initiation site on the subgenomic mRNA is still partially recognized when the initiation codon AUG is modified to other codons only in infected cells. Finally, immunolocalization of different eIFs reveals that eIF2 Ξ± and eIF4G are excluded from the foci, where viral RNA replication occurs, while eIF3, eEF2 and ribosomes concentrate in these regions. These findings support the notion that canonical initiation takes place when the subgenomic mRNA is translated out of the infection context, while initiation can occur without some eIFs and even at non-AUG codons in infected cells

    AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis

    Get PDF
    The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism

    Insertion of a transposon for chloramphenicol resistance into bacteriophage Mu

    No full text
    We have isolated mutants of bacteriophage Mu carrying the X mutations caused by the insertion of cam (Tn9), a transposon for chloramphenicol resistance. The Mu X cam mutants were obtained by selecting for heat-resistant survivors of a Mucts62, P1cam dilysogen. Like the previously described X mutants, Mu X cam mutants are defective prophages which can be excised from the host DNA at a frequency of 10(-5) to 10(-7) per cell. Tn9 insertions in Mu X cam mutants are located within 5000 base pairs of the left end of Mu DNA in a region that controls early replication functions of Mu. There is one EcoRI cleavage site in Tn9. The Tn9 transposon itself can be excised precisely from the Mu X cam mutants to generate wild type Mu. In most Mu X cam mutants, precise excision of Tn9 occurs at a low frequency (10(-6) per cell), whereas in some, the frequency is higher (10(-4) per cell). Mu X cam prophages can replicate after induction with the help of wild type Mu. The lysates containing Mu X cam particles, however, fail to transduce chloramphenicol resistance at a high frequency; Mu X cam mutants apparently have a cis dominant defect in integration
    • …
    corecore