2,872 research outputs found

    Pure spin-angular momentum coefficients for non-scalar one-particle operators in jj-coupling

    Full text link
    A revised program for generating the spin-angular coefficients in relativistic atomic structure calculations is presented. When compared with our previous version [G.Gaigalas, S.Fritzsche and I.P.Grant, CPC 139 (2001) 263], the new version of the Anco program now provides these coefficients for both, scalar as well as non-scalar one-particle operators as they arise frequently in the study of transition probabilities, photoionization and electron capture processes, the alignment transfer through excited atomic states, collision strengths, and in many other investigations. The program is based on a recently developed formalism [G.Gaigalas, Z.Rudzikas, and C.F.Fischer, J. Phys. B 30 (1997) 3747], which combines techniques from second quantization in coupled tensorial form, the theory of quasispin, and the use of reduced coefficients of fractional parentage, in order to derive the spin-angular coefficients for complex atomic shell structures more efficiently. By making this approach now available also for non-scalar interactions, therefore, studies on a whole field of new properties and processes are likely to become possible even for atoms and ions with a complex structure

    Maple procedures for the coupling of angular momenta. VI. LS-jj transformations

    Full text link
    Transformation matrices between different coupling schemes are required, if a reliable classification of the level structure is to be obtained for open-shell atoms and ions. While, for instance, relativistic computations are traditionally carried out in jj-coupling, a LSJ coupling notation often occurs much more appropriate for classifying the valence-shell structure of atoms. Apart from the (known) transformation of single open shells, however, further demand on proper transformation coefficients has recently arose from the study of open d- and f-shell elements, the analysis of multiple--excited levels, or the investigation on inner-shell phenomena. Therefore, in order to facilitate a simple access to LS jj transformation matrices, here we present an extension to the Racah program for the set-up and the transformation of symmetry-adapted functions. A flexible notation is introduced for defining and for manipulating open-shell configurations at different level of complexity which can be extended also to other coupling schemes and, hence, may help determine an optimum classification of atomic levels and processes in the future

    Compton scattering of twisted light: angular distribution and polarization of scattered photons

    Full text link
    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light

    Correlated EoM and Distributions for A=6 Nuclei

    Get PDF
    Energy spectra and electromagnetic transitions of nuclei are strongly depending from the correlations of the bound nucleons. Two particle correlations are responsible for the scattering of model particles either to low momentum- or to high momentum-states. The low momentum states form the model space while the high momentum states are used to calculate the G-matrix. The three and higher order particle correlations do not play a role in the latter calculation especially if the correlations induced by the scattering operator are of sufficient short range. They modify however, via the long tail of the nuclear potential, the Slater determinant of the A particles by generating excited Slater's determinants. In this work the influence of the correlations on the level structure and ground state distributions of even open shell nuclei is analyzed via the boson dynamic correlation model BDCM. The model is based on the unitary operator eSe^S ({\it S} is the correlation operator) formalism which in this paper is presented within a non perturbative approximation. The low lying spectrum calculated for 6^6Li reproduce very well the experimental spectrum while for 6^6He a charge radius slightly larger than that obtained within the isotopic-shift (IS) theory has been calculated. Good agreement between theoretical and experimental results has been obtained without the introduction of a genuine three body force.Comment: 25 pages 4 figures. To be published in the Progress Theoretical Physic
    • …
    corecore