891 research outputs found

    Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

    Get PDF
    Context. The Odin satellite is now into its sixteenth year of operation, much surpassing its design life of two years. One of the sources which Odin has observed in great detail is the Sgr A Complex in the centre of the Milky Way. Aims. To study the presence of NH3 in the Galactic Centre and spiral arms. Methods. Recently, Odin has made complementary observations of the 572 GHz NH3 line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results. Significant NH3 emission has been observed in both the +50 km/s Cloud and the CND. Clear NH3 absorption has also been detected in many of the spiral arm features along the line of sight from the Sun to the core of our Galaxy. Conclusions. The very large velocity width (80 km/s) of the NH3 emission associated with the shock region in the southwestern part of the CND may suggest a formation/desorption scenario similar to that of gas-phase H2O in shocks/outflows.Comment: 5 pages, 3 figures, 3 table

    Design and characterization of a cobalt-free stainless maraging steel for laser-based powder bed fusion

    Get PDF
    This study presents a new Co-free stainless maraging variant for laser-based powder bed fusion developed using a computational alloy design approach. The goal was to develop an easily printable material with similar performance to 18Ni-300. After screening numerous compositions, Fe-13.2Cr-9.1Ni-1.1Al-0.6Mo-0.5Nb-0.23Ti-0.5Mn-0.5Si (wt.%) was selected. This composition showed excellent printability with low porosity levels. The precipitation strengthening response was evaluated by aging at 500 \ub0C for 15 min, 3 h and 18 h, measuring hardness, tensile strength, and by characterization using atom probe tomography. After 15 min of aging, 90% of the maximum hardness was reached, thanks to formation of (Ni, Al, Nb, Ti, Mn, Si) clusters with a density of 1.5 7 1024 m-3. Between 15 min and 3 h, distinct precipitates formed with a radius of ∼1.4 nm. The precipitates underwent a splitting phenomenon after 18 h, forming several unique Ni-rich precipitates including Ni16Si7(Ti, Nb)6 and Ni3(Al, Ti, Nb, Si). The splitting can be a reason for the slow coarsening rate, as the average precipitate radius after 18 h was only 2 nm. Simulations of the precipitation sequence using PRISMA indicated very rapid and dense precipitation of L12-Ni3X precipitates with a slow coarsening rate, in agreement with experimental observations

    Tetrahedral and Triangular Deformations of Z=NZ=N Nuclei in Mass Region A∼60−80A \sim 60-80

    Get PDF
    We study static non-axial octupole deformations in proton-rich Z=NZ=N nuclei, 64^{64}Ge, 68^{68}Se, 72^{72}Kr, 76^{76}Sr, 80^{80}Zr and 84^{84}Mo, by using the Skyrme Hartree-Fock plus BCS calculation with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in 68^{68}Se is extremely soft for the Y33Y_{33} triangular deformation, and that in 80^{80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y32Y_{32} tetrahedral deformation.Comment: 8 pages, 4 Postscript figures, REVTE

    Interaction between giant atoms in a one-dimensional structured environment

    Get PDF
    Giant atoms, quantum emitters that couple to light at multiple discrete points, are emerging as a new paradigm in quantum optics due to their many promising properties, such as decoherence-free interaction. While most previous work has considered giant atoms coupled to open continuous waveguides or a single giant atom coupled to a structured bath, here we study the interaction between two giant atoms mediated by a structured waveguide, e.g., a photonic crystal waveguide. This environment is characterized by a finite energy band and a band gap, which affect atomic dynamics beyond the Markovian regime. Here we show that, inside the band, decoherence-free interaction is possible for different atom-cavity detunings, but is degraded from the continuous-waveguide case by time delay and other non-Markovian effects. Outside the band, where atoms interact through the overlap of bound states, we find that giant atoms can interact more strongly and over longer distances than small atoms for some parameters, for instance, when restricting the maximum coupling strength achievable per coupling point. The results presented here may find applications in quantum simulation and quantum gate implementation

    Searching for O2_2 in the SMC:Constraints on Oxygen Chemistry at Low Metallicities

    Full text link
    We present a 39 h integration with the Odin satellite on the ground-state 118.75 GHz line of O2 towards the region of strongest molecular emission in the Small Magellanic Cloud. Our 3sigma upper limit to the O2 integrated intensity of <0.049 K km/s in a 9'(160 pc) diameter beam corresponds to an upper limit on the O2/H2 abundance ratio of <1.3E-6. Although a factor of 20 above the best limit on the O2 abundance obtained for a Galactic source, our result has interesting implications for understanding oxygen chemistry at sub-solar metal abundances. We compare our abundance limit to a variety of astrochemical models and find that, at low metallicities, the low O2 abundance is most likely produced by the effects of photo-dissociation on molecular cloud structure. Freeze-out of molecules onto dust grains may also be consistent with the observed abundance limit, although such models have not yet been run at sub-solar initial metallicities.Comment: 4 pages, accepted to A&A Letter

    Herschel and Odin observations of H2O, CO, CH, CH+, and NII in the barred spiral galaxy NGC 1365. Bar-induced activity in the outer and inner circumnuclear tori

    Full text link
    The Odin satellite is now into its twentieth year of operation, much surpassing its design life of two years. One of its major pursuits was the search for and study of H2O in the Solar System and the Milky Way galaxy. Herschel has observed the central region of NGC 1365 in two positions, and both its SPIRE and PACS observations are available in the Herschel Science Archive. Herschel PACS images have been produced of the 70 and 160 micron infrared emission from the whole galaxy, and also of the cold dust distribution as obtained from the ratio of the 160 to 70 micron images. The Herschel SPIRE observations have been used to produce maps of the 557 GHz o-H2O, 752 GHz p-H2O, 691 GHz CO(6-5), 1037 GHz CO(9-8), 537 GHz CH, 835 GHz CH+, and the 1461 GHz NII lines; however, these observations have no effective velocity resolution. Odin has recently observed the 557 GHz o-H2O ground state line in the central region with high (5 km/s) spectral resolution. The emission and absorption of H2O at 557 GHz, with a velocity resolution of 5 km/s, has been marginally detected in NGC 1365 with Odin. The H2O is predominantly located in a shocked 15" (1.3 kpc) region near some central compact radio sources and hot-spot HII regions, close to the northeast component of the molecular torus surrounding the nucleus. An analysis of the H2O line intensities and velocities indicates that a shock-region is located here. This is corroborated by a statistical image deconvolution of our SEST CO(3-2) observations, yielding 5" resolution, and a study of our VLA HI absorption observations. Additionally, an enticing 20" HI ridge is found to extend south-southeast from the nucleus, coinciding in position with the southern edge of an OIII outflow cone, emanating from the nucleus. The molecular chemistry of the shocked central region is analyzed with special emphasis on the CO, H2O and CH, CH+ results.Comment: 25 pages, 11 figure

    THE ROLE OF SHOE SOLE DUROMETER ON JUMPING KINETICS

    Get PDF
    This study investigated the relationship between shoe heel density (HD), toe density (TD) and the peak ground reaction force (GRF) and rate of force development (RFD) during jumping. This study also assessed the reliability of the durometer to assess shoe soles. Subjects included 12 men. Shoe HD and TD were assessed via durometer and kinetics were determined during the countermovement jump on a force platform. A Pearson bivariate correlation analysis was performed. Results reveal that HD was not correlated with GRF (r = -.22, p = .50) or RFD (r = -.14, p = .67). Similarly, TD was not correlated with GRF (r = -.29, p = .37) or RFD (r = -.28, p = .37). Intraclass correlation coefficients for the heel and toe durometer were .95 and .92, respectively. Jumping kinetics were not mediated by shoe sole characteristics, though the durometer was reliable for assessing shoe soles

    Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)

    Full text link
    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H216_2^{16}O and H218_2^{18}O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are 16^{16}O/18^{18}O = 499 ±\pm 24 and D/H = 1.4 ±\pm 0.4 ×10−4\times 10^{-4} in water, 32^{32}S/34^{34}S = 24.7 ±\pm 3.5 in CS, all compatible with terrestrial values. The ratio 12^{12}C/13^{13}C = 109 ±\pm 14 in HCN is marginally higher than terrestrial and 14^{14}N/15^{15}N = 145 ±\pm 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic

    A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data

    Get PDF
    Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm -- regions largely unobservable from the ground. Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 hours each). An on-source integration time of 20 hours was achieved for most bands. The entire campaign consumed ~1100 orbits, each containing one hour of serviceable astro-observation. We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from NH3 and its rare isotopologue 15NH3. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H218O, H217O and 13CO lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in Astronomy and Astrophysics 30 August 200

    KINETIC ANALYSIS OF AGILITY LADDERS DRILLS AND THEIR COMPARISON TO SPORT-SPECIFIC MOVEMENTS SUCH AS SHUFFLING AND SPRINTING

    Get PDF
    This study assessed agility ladder drills for the purpose of comparing kinetic characteristics of these drills to one another, and to sprinting and shuffling. Subjects (N=30) performed six agility ladder drills as well as sprinted and shuffled to the left and right over two large force platforms. A repeated measure ANOVA was used to assess horizontal and vertical ground reaction force (GRF) and the ratio of horizontal to vertical GRF, averaged from three steps for each drill. Significant main effects were found for all variables (p ≤ 0.001). Post-hoc analysis identified differences (p ≤ 0.05) between the agility drills as well as between the agility drills and the sprinting and shuffling. Results can be used to guide the progression of agility ladder drills based on known intensity and allow practitioners to prioritize drills that are most similar to sport-specific movements such as sprinting and shuffling
    • …
    corecore