30 research outputs found

    Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori

    Get PDF
    Transcriptional regulatory networks (TRNs) transduce environmental signals into coordinated output expression of the genome. Accordingly, they are central for the adaptation of bacteria to their living environments and in host–pathogen interactions. Few attempts have been made to describe a TRN for a human pathogen, because even in model organisms, such as Escherichia coli, the analysis is hindered by the large number of transcription factors involved. In light of the paucity of regulators, the gastric human pathogen Helicobacter pylori represents a very appealing system for understanding how bacterial TRNs are wired up to support infection in the host. Herein, we review and analyze the available molecular and β€œ-omic” data in a coherent ensemble, including protein–DNA and protein–protein interactions relevant for transcriptional control of pathogenic responses. The analysis covers ∼80% of the annotated H. pylori regulators, and provides to our knowledge the first in-depth description of a TRN for an important pathogen. The emerging picture indicates a shallow TRN, made of four main modules (origons) that process the physiological responses needed to colonize the gastric niche. Specific network motifs confer distinct transcriptional response dynamics to the TRN, while long regulatory cascades are absent. Rather than having a plethora of specialized regulators, the TRN of H. pylori appears to transduce separate environmental inputs by using different combinations of a small set of regulators

    Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium strains expressing the BoNT/F H(C) fragment.

    No full text
    The utility of the htrA, pagC and nirB promoters to direct the expression of the carboxy-terminal (H(C)) fragment of botulinum toxin F (FH(C)) in Salmonella enterica var Typhimurium has been evaluated. Only low levels of serum antibody were induced after immunisation, and some protection against botulinum toxin type F was demonstrated after oral immunisation of mice with two doses of any of these recombinant Salmonella. Immunisation with two doses of recombinant Salmonella expressing FH(C) from the htrA promoter gave the greatest protection, against up to 10,000 mouse lethal doses of botulinum toxin type F. These results demonstrate the feasibility of an orally delivered vaccine against botulinum toxin type F

    Improved Efficiency of Inverse PCR Mutagenesis

    No full text

    Helicobacter pylori pore-forming cytolysin orthologue TlyA possesses in vitro hemolytic activity and has a role in colonization of the gastric mucosa

    No full text
    Hemolysins have been found to possess a variety of functions in bacteria, including a role in virulence. Helicobacter pylori demonstrates hemolytic activity when cultured on unlysed blood agar plates which is increased under iron-limiting conditions. However, the role of an H. pylori hemolysin in virulence is unclear. Scrutiny of the H. pylori 26695 genome sequence suggests the presence of at least two distinct hemolysins, HP1086 and HP1490, in this strain. Previous studies have shown that the in vitro hemolytic activity of H. pylori is reduced when it is coincubated with dextran 5000, suggesting the presence of a pore-forming cytolysin. HP1086 has homology to pore-forming cytolysins (TlyA) from other bacterial species, and the introduction of the cloned H. pylori tlyA gene into a nonhemolytic Escherichia coli strain conferred hemolytic activity. An H. pylori tlyA defined mutant showed reduced in vitro hemolytic activity, which appears to be due to pore formation, as the hemolytic activity of the wild-type strain is reduced to the same level as the tlyA mutant by the addition of dextran 5000. The mutant also showed reduced adhesion to human gastric adenocarcinoma cells and failed to colonize the gastric mucosa of mice. These data clearly suggest a role in virulence for H. pylori TlyA, contrary to the suggestion that hemolytic activity is an in vitro phenomenon for this pathogen

    The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical-in-plug assays are commonly used to study bacterial chemotaxis, sometimes in the absence of stringent controls.</p> <p>Results</p> <p>We report that non-chemotactic and non-motile mutants in two distinct bacterial species (<it>Shewanella oneidensis </it>and <it>Helicobacter pylori</it>) show apparent zones of accumulation or clearing around test plugs containing potential attractants or repellents, respectively.</p> <p>Conclusions</p> <p>Our results suggest that the chemical-in-plug assay should be used with caution, that non-motile or non-chemotactic mutants should be employed as controls, and that results should be confirmed with other types of assays.</p

    A fixed-time diffusion analysis method determines that the three cheV genes of Helicobacter pylori differentially affect motility

    No full text
    Helicobacter pylori is a chemotactic bacterium that has three CheV proteins in its predicted chemotaxis signal transduction system. CheV proteins contain both CheW- and response-regulator-like domains. To determine the function of these proteins, we developed a fixed-time diffusion method that would quantify bacterial direction change without needing to define particular behaviours, to deal with the many behaviours that swimming H. pylori exhibit. We then analysed mutants that had each cheV gene deleted individually and found that the behaviour of each mutant differed substantially from wild-type and the other mutants. cheV1 and cheV2 mutants displayed smooth swimming behaviour, consistent with decreased cellular CheY-P, similar to a cheW mutant. In contrast, the cheV3 mutation had the opposite effect and the mutant cells appeared to change direction frequently. Additional analysis showed that the cheV mutants displayed aberrant behaviour as compared to the wild-type in the soft-agar chemotaxis assay. The soft-agar assay phenotype was less extreme compared to that seen in the fixed-time diffusion model, suggesting that the cheV mutants are able to partially compensate for their defects under some conditions. Each cheV mutant furthermore had defects in mouse colonization that ranged from severe to modest, consistent with a role in chemotaxis. These studies thus show that the H. pylori CheV proteins each differently affect swimming behaviour
    corecore