2,860 research outputs found
Poisson sigma models and deformation quantization
This is a review aimed at a physics audience on the relation between Poisson
sigma models on surfaces with boundary and deformation quantization. These
models are topological open string theories. In the classical Hamiltonian
approach, we describe the reduced phase space and its structures (symplectic
groupoid), explaining in particular the classical origin of the
non-commutativity of the string end-point coordinates. We also review the
perturbative Lagrangian approach and its connection with Kontsevich's star
product. Finally we comment on the relation between the two approaches.Comment: 11 page
On the AKSZ formulation of the Poisson sigma model
We review and extend the Alexandrov-Kontsevich-Schwarz-Zaboronsky
construction of solutions of the Batalin-Vilkovisky classical master equation.
In particular, we study the case of sigma models on manifolds with boundary. We
show that a special case of this construction yields the Batalin-Vilkovisky
action functional of the Poisson sigma model on a disk. As we have shown in a
previous paper, the perturbative quantization of this model is related to
Kontsevich's deformation quantization of Poisson manifolds and to his formality
theorem. We also discuss the action of diffeomorphisms of the target manifolds.Comment: 19 page
A path integral approach to the Kontsevich quantization formula
We give a quantum field theory interpretation of Kontsevich's deformation
quantization formula for Poisson manifolds. We show that it is given by the
perturbative expansion of the path integral of a simple topological bosonic
open string theory. Its Batalin-Vilkovisky quantization yields a superconformal
field theory. The associativity of the star product, and more generally the
formality conjecture can then be understood by field theory methods. As an
application, we compute the center of the deformed algebra in terms of the
center of the Poisson algebra.Comment: 22 pages, 2 figures, references added. Conjecture on the center made
more precis
From local to global deformation quantization of Poisson manifolds
We give an explicit construction of a deformation quantization of the algebra
of functions on a Poisson manifolds, based on Kontsevich's local formula. The
deformed algebra of functions is realized as the algebra of horizontal sections
of a vector bundle with flat connection.Comment: 16 pages. Reference and dedication added. Sign corrected, remark on
Poisson vector fields adde
Fedosov connections on jet bundles and deformation quantization
We review our construction of star-products on Poisson manifolds and discuss
some examples. In particular, we work out the relation with Fedosov's original
construction in the symplectic case.Comment: Contribution to the proceedings of the conference "Deformation
Quantization", Strasbourg, May 31-June 2, 200
Elliptic quantum groups and Ruijsenaars models
We construct symmetric and exterior powers of the vector representation of
the elliptic quantum groups . The corresponding transfer
matrices give rise to various integrable difference equations which could be
solved in principle by the nested Bethe ansatz method. In special cases we
recover the Ruijsenaars systems of commuting difference operators.Comment: 15 pages, late
Gesundheitsausgaben und demografischer Wandel
Zusammenfassung: Der Einfluss steigender Lebenserwartung auf die künftigen Gesundheitsausgaben wird aufgrund einer immer stärker ins hohe Alter verdrängten Mortalität einerseits und hoher Gesundheitsausgaben im letzten Lebensjahr (sogenannte Sterbekosten) andererseits moderat ausfallen. Da der Anstieg der individuellen Krankheitsausgaben nicht durch das Alter an sich, sondern durch die hohen Kosten in der Nähe zum Tod verursacht wird, hat der Aufschub der Mortalität in höhere Alter keinen starken Effekt auf die Lebensausgaben für Gesundheit. Eine Schätzung der GKV-Ausgabenentwicklung bis 2050, die die Sterbekosten explizit berücksichtigt, legt einen geringeren demografischen Einfluss nahe als eine Prognose auf Grundlage gegebener altersspezifischer Gesundheitsausgabenprofil
Parafermionic theory with the symmetry Z_N, for N even
Following our previous papers (hep-th/0212158 and hep-th/0303126) we complete
the construction of the parafermionic theory with the symmetry Z_N based on the
second solution of Fateev-Zamolodchikov for the corresponding parafermionic
chiral algebra. In the present paper we construct the Z_N parafermionic theory
for N even. Primary operators are classified according to their transformation
properties under the dihedral group (Z_N x Z_2, where Z_2 stands for the Z_N
charge conjugation), as two singlets, doublet 1,2,...,N/2-1, and a disorder
operator. In an assumed Coulomb gas scenario, the corresponding vertex
operators are accommodated by the Kac table based on the weight lattice of the
Lie algebra D_{N/2}. The unitary theories are representations of the coset
SO_n(N) x SO_2(N) / SO_{n+2}(N), with n=1,2,.... We suggest that physically
they realise the series of multicritical points in statistical systems having a
Z_N symmetry
Regional convergence and economic performance: a case study of the West German Laender
In the paper we analyze the convergence process of the West German Laender from 1970 to 1995 using descriptive tools as well as panel estimation methods. Although there have been some winners in this process, the main finding is that convergence was insufficient in the sense that no gains have been achieved with respect to a stronger harmonization of the economic performances in the Laender. Some of them proofed to be unable to respond adequately to structural changes, whereas others successfully overcame those challenges. Panel estimates of production functions of the Laender reveal no significant differences in the production technology across Laender. -- Die Arbeit untersucht, ob im Zeitraum von 1970 bis 1996 eine Konvergenz im wirtschaftlichen Wachstum der westlichen Bundesländer stattgefunden hat. Die Ergebnisse zeigen, daß insbesondere die südlichen Bundesländer ihre relative Position verbessern konnten. Jene Bundesländer, die schon 1970 als ?strukturschwach? galten, schafften es nicht, den Abstand zu verringern. Der Strukturwandel wurde von den einzelnen Bundesländern mit unterschiedlichem Erfolg bewältigt. Eine Länder vermochten daraus Vorteile für ihre Entwicklung zu ziehen, während andere nur unzureichend auf diese Herausforderung reagierten. Insgesamt kann im Untersuchungszeitraum weder von einer Konvergenz noch von einer Divergenz der wirtschaftlichen Entwicklung in den Ländern gesprochen werden. Dem widerspricht nicht, daß einige Ländern (Hessen und Bayern) insgesamt erfolgreicher in ihrer Entwicklung waren als die übrigen Bundesländer.
Parafermionic theory with the symmetry Z_N, for N odd
We construct a parafermionic conformal theory with the symmetry Z_N, for N
odd, based on the second solution of Fateev-Zamolodchikov for the corresponding
parafermionic chiral algebra. Primary operators are classified according to
their transformation properties under the dihedral group D_N, as singlet,
doublet 1,2,...,(N-1)/2, and disorder operators. In an assumed Coulomb gas
scenario, the corresponding vertex operators are accommodated by the weight
lattice of the Lie algebra B_(N-1)/2. The unitary theories are representations
of the coset SO_n(N) x SO_2(N) / SO_{n+2}(N), with n=1,2,... . Physically, they
realise the series of multicritical points in statistical theories having a D_N
symmetry.Comment: 34 pages, 1 figure. v2: note added in proo
- …