36,801 research outputs found

    Boson Pairs in a One-dimensional Split Trap

    Get PDF
    We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping potential with a tunable zero-ranged barrier at the trap centre. The full characterisation of the ground state is done by calculating the reduced single-particle density, the momentum distribution and the two-particle entanglement. We derive several analytical expressions in the limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to finite interparticle interactions by numerical solution. As pair interactions in double wells form a fundamental building block for many-body systems in periodic potentials, our results have implications for a wide range of problems.Comment: 9 pages, 8 figure

    United States Methods of Evaluating Air Routes in Bilateral Air Agreements

    Get PDF

    Human Capital, Fertility, and Economic Growth

    Get PDF
    Our model of growth departs from both the Malthusian and neoclassical approaches by including investments in human capital. We assume, crucially, that rates of return on human capital investments rise, rather than, decline, as the stock of human capital increases, until the stock becomes large. This arises because the education sector uses human capital note intensively than either the capital producing sector of the goods producing sector. This produces multiple steady scares: an undeveloped steady stare with little human capital, low rates of return on human capital investments and high fertility, and a developed steady stats with higher rates of return a large, and, perhaps, growing stock of human capital and low fertility. Multiple steady states mean that history and luck are critical determinants of a country's growth experience.

    Quantum Chessboards in the Deuterium Molecular Ion

    Get PDF
    We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control pulse is applied after a chosen delay time to create selective interferences. A `chessboard' pattern of states can be realized in which a set of even- or odd-numbered vibrational states can be selectively annihilated or enhanced. A technique is proposed for experimental realization and observation of this effect using 5 fs pulses of 790 nm radiation, with intermediate intensity (5e13 W/cm2)Comment: 12 pages, 5 figure

    The Local Radio-IR Relation in M51

    Get PDF
    We observed M51 at three frequencies, 1.4 GHz (20 cm), 4.9 GHz (6 cm), and 8.4 GHz (3.6 cm), with the Very Large Array and the Effelsberg 100 m telescope to obtain the highest quality radio continuum images of a nearby spiral galaxy. These radio data were combined with deconvolved Spitzer IRAC 8 μm and MIPS 24 μm images to search for and investigate local changes in the radio-IR correlation. Utilizing wavelet decomposition, we compare the distribution of the radio and IR emission on spatial scales between 200 pc and 30 kpc. We show that the radio-IR correlation is not uniform across the galactic disk. It presents a complex behavior with local extrema corresponding to various galactic structures, such as complexes of H II regions, spiral arms, and interarm filaments, indicating that the contribution of the thermal and non-thermal radio emission is a strong function of environment. In particular, the relation of the 24 μm and 20 cm emission presents a linear relation within the spiral arms and globally over the galaxy, while it deviates from linearity in the interarm and outer regions as well in the inner region, with two different behaviors: it is sublinear in the interarm and outer region and overlinear in the central 3.5 kpc. Our analysis suggests that the changes in the radio/IR correlation reflect variations of interstellar medium properties between spiral arms and interarm region. The good correlation in the spiral arms implies that 24 μm and 20 cm are tracing recent star formation, while a change in the dust opacity, "Cirrus" contribution to the IR emission and/or the relation between the magnetic field strength and the gas density can explain the different relations found in the interarm, outer, and inner regions

    The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit

    Full text link
    Gravitomagnetism--a motional coupling of matter analogous to the Lorentz force in electromagnetism--has observable consequences for any scenario involving differing mass currents. Examples include gyroscopes located near a rotating massive body, and the interaction of two orbiting bodies. In the former case, the resulting precession of the gyroscope is often called ``frame dragging,'' and is the principal measurement sought by the Gravity Probe-B experiment. The latter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar laser ranging (LLR) to approximately 0.1% accuracy--better than the anticipated accuracy of the Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phenomena by employing the same gravitomagnetic term in the equation of motion to obtain both gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.Comment: 4 pages; accepted for publication in Physical Review Letter

    An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma

    Get PDF
    The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer
    • …
    corecore