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Boson pairs in a one-dimensional split trap
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We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping
potential with a tunable zero-ranged barrier at the trap center. The full characterization of the ground state is
done by calculating the reduced single-particle density, the momentum distribution, and the two-particle en-
tanglement. We derive several analytical expressions in the limit of infinite repulsion �Tonks-Girardeau limit�
and extend the treatment to finite interparticle interactions by numerical solution. As pair interactions in double
wells form a fundamental building block for many-body systems in periodic potentials, our results have
implications for a wide range of problems.
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I. INTRODUCTION

The last two decades have seen considerable experimental
advancement in the area of cooling and trapping neutral at-
oms �1�, with one of the crowning achievements being the
realization of Bose-Einstein condensation �BEC� �2�. There
continues, today, intense experimental investigation into sys-
tems of trapped, ultracold atoms, with potential deployment
of this technology in the fields of precision interferometry
and quantum information processing �3�. In particular, excit-
ing advancements have been reported on the behavior of cold
atoms in periodic potentials, which can be created from the
optical dipole forces arising from several crossed, interfering
laser beams �4,5�. Such arrangements have allowed experi-
mentalists to trap and control small numbers of particles on
tightly confined, individual lattice sites and thereby severely
restrict their center-of-mass dynamics. Since such potentials
can be applied in selective directions in space, these tech-
niques allow the creation of effectively lower-dimensional
systems �6–9�.

A further external handle for control over cold-atomic
many-particle systems is the ability to change the interpar-
ticle scattering length, allowing access to ideal, as well as
strongly correlated regimes. This can be accomplished by
using Feshbach resonances �10� or by tuning of the effective
mass of particles moving in a periodic potential �8�.

Combining these techniques has permitted the experimen-
tal realization of atomic gases in the so-called Tonks-
Girardeau �TG� regime, wherein a quasi-one-dimensional
�quasi-1D� quantum gas of strongly interacting bosons ac-
quires fermionic properties �11–13�. Not surprisingly, these
experimental advancements have motivated many theoretical
investigations of systems of strongly interacting bosonic
gases in 1D, subject to different confining potentials �14–17�.

The theoretical description of a sufficiently dilute system
can be achieved by restricting consideration to one- and two-

particle effects only. As such, the fundamental building block
for the description of the many-body system is the system of
two interacting particles, subject to some trapping potential.
In addition, for the low momenta associated with ultracold
particles it becomes possible to represent the particle-particle
interactions through a pseudopotential, whereby a descrip-
tion of the particle-particle interactions depends only on the
s-wave scattering length �18�. Previous work has reported an
analytical solution for a pair of particles in isotropic �19� and
anisotropic �20� three-dimensional harmonic confining po-
tentials, within the pseudopotential approximation. An ana-
lytic solution for the 1D case is also presented in �19�. It is
straightforward to adapt this solution to the problem of a
single particle in a �-split harmonic trap �16�. Such a trap can
be seen as an idealized model of a realistic double-well po-
tential where the strength of the � barrier is analogous to the
area �quasiclassical action �21�� of a physical potential. Al-
ternatively, a pointlike potential can be a good approximation
to describe a strongly localized impurity in cold-atomic
gases �22,23�. In �16� the authors used analytic 1D single-
particle eigenstates to construct the many-body ground state
for a system of N particles confined by a �-split trap in the
TG limit.

As the single-particle eigenstates are known for arbitrary
barrier strength, it is straightforward to obtain an analytic
expression for the two-particle ground state in the TG limit,
while for finite interactions a numerical scheme is required.
In this work we analyze the physics of a boson pair including
the reduced single-particle density, the momentum distribu-
tions, and the two-particle entanglement, which we quantify
by means of the von Neumann entropy �24–31�. In particu-
lar, we consider how these properties of the ground state may
be altered as both the barrier strength and interaction strength
are varied. Ultracold few-boson systems in a double-well
trap have recently received a thorough numerical investiga-
tion. In �32–34� the authors employ narrow-width Gaussians
to model both the contact potential and central splitting po-
tential. They proceed to use a multiconfigurational time-
dependent Hartree approach, incorporating the relaxation
method, to obtain the ground state for this system and, sub-
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sequently, to investigate some of the many-body properties.
Where comparison is justified, the results of our work agree
well with this numerical approach.

The remainder of this paper is organized as follows. In
Sec. II we describe the effective Hamiltonian and the as-
sumptions of the model. In Sec. III the single-particle eigen-
states are reviewed and used in Sec. IV to construct an ana-
lytical representation for the two-particle ground state in the
TG regime �i.e., the Tonks molecule�. Using this analytical
representation we investigate the dependence on the barrier
strength of the reduced single-particle density, the momen-
tum distribution, and the von Neumann entropy for a boson
pair. Section V employs a discretization scheme to allow for
the variation of the interaction strength between the particles.
The computational method is outlined and a set of results is
presented. Finally, in Sec. VI we make some concluding re-
marks and comment on the experimental realization of the
proposed system.

II. MODEL HAMILTONIAN

Consider a system of two identical bosonic atoms which
are confined in a highly anisotropic harmonic trapping po-
tential where the trapping frequency in the perpendicular di-
rections, ��, is much larger than in the axial direction, ��

��. The associated length scales are d�=�� /m�� and d
=�� /m�. As a result of the large energy-level separation,
associated with the transverse eigenstates �����, at low tem-
peratures the transverse motion is restricted to the lowest
mode. In this case the system can be treated as quasi-1D and
may be described using the effective Hamiltonian

H = �
i=1,2

hi + g1D��x2 − x1� , �1�

where the single-particle Hamiltonian hi is given by

hi = −
�2

2m

�2

�xi
2 +

1

2
m�2xi

2 + ���xi� . �2�

Here, m is the particle mass and xi �i=1,2� is the 1D position
coordinate of particle i. The last term of the single-particle
Hamiltonian represents a pointlike barrier located at the ori-
gin, and the parameter ��0 determines the strength of this
barrier. The quantity g1D represents the interaction strength
and is related to the 1D s-wave scattering length �a1D�
through g1D=−2�2 /ma1D. In turn, a1D is related to the actual
three-dimensional s-wave scattering length a3D through a1D
=−d�

2 /2a3D�1−Ca3D /d��, where C is a constant of approxi-
mate value 1.4603 �35�.

In the limit of tight confinement, the free-space pseudo-
potential approximation for the particle-particle interactions
becomes compromised �36,37�. In this case, one may obtain
the eigenenergies for the system by employing an energy-
dependent scattering length and solving for the energy eigen-
values self-consistently �38–40�. For current purposes it is
supposed that we are in the regime for which the pseudopo-
tential approximation is still valid and the 1D collisional cou-
pling g1D acts as a parameter for the system. This regime
requires that the range of the interparticle interaction be

much smaller than the characteristic length scale of the con-
fining potential �36–40� �i.e., a1D�d�.

III. SINGLE-PARTICLE EIGENSTATES

We can rewrite the single-particle Hamiltonian in Eq. �2�
according to the rescaling x=dx̄, where d is the ground-state
extent in the axial direction, as introduced above,

h̄ = −
1

2

�2

�x̄2 +
1

2
x̄2 + �̄��x̄� , �3�

where the scaled barrier strength is now given by �̄
= ���d�−1�. The time-independent Schrödinger equation for
this system then reads

h̄�n�x̄� = Ēn�n�x̄� . �4�

Due to the scaling, the energies Ēn are given in units of ��.
At this point, for convenience, we drop the overbar on all
quantities and acknowledge that we are, henceforth, dealing
in the scaled quantities just described. The analytic solution
to Eq. �4�, for those eigenfunctions of even symmetry, can be
found as �19�

�n�x� = Nne−x2/2U�1

4
−

En

2
,
1

2
,x2�, n = 0,2,4 . . . . �5�

Here Nn is the normalization constant and U�a ,b ,z� are the
Kummer functions �41�. The corresponding eigenenergies En
are determined by the roots of the implicit relation �19�

− � = 2

	�−
En

2
+

3

4
�

	�−
En

2
+

1

4
� . �6�

By contrast, the antisymmetric eigenfunctions vanish at the
origin and are unaffected by the barrier. They are therefore
given by the odd eigenstates of the unperturbed harmonic
potential ��=0�

�n�x� = NnHn�x�e−x2/2, n = 1,3,5 . . . , �7�

where Hn�x� is the nth-order Hermite polynomial. The cor-
responding energies are given by the eigenvalues of the odd-
parity states of the harmonic oscillator, En= �n+ 1

2
�.

Considering Eq. �6�, in the limit �→0 we find En

= 1
2 , 5

2 , 9
2 , . . ., and the even eigenstates are simply given by the

even-harmonic oscillator solutions. On the other hand, for
�→
 these energies converge towards En= 3

2 , 7
2 , 11

2 , . . ., and
each even eigenstate becomes degenerate with the next
highest-lying odd-parity state.

IV. TONKS MOLECULE

In the limit g1D→
 the pointlike, impenetrable, interac-
tion between the two atoms can be represented as a con-
straint on the allowed bosonic wave function �k

B �13–16�,

�k
B�x1,x2� = 0 if x1 = x2 for all k , �8�

where k is an index labeling the eigenstates. One can see
immediately that this constraint is equivalent to the exclusion
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principle for a corresponding system of two spin-aligned fer-
mions, which is a symmetry that gives rise to the Bose-Fermi
mapping theorem �12–14�. It allows one to solve the strongly
interacting system of two bosons by solving the, often more
accessible, system of two noninteracting fermions, then
properly symmetrizing the final wave function. In particular,
the ground state of the two-boson system �the Tonks mol-
ecule�, �0

B, is related to the noninteracting fermionic ground
state �0

F by

�0
B�x1,x2� = 	�0

F�x1,x2�	 . �9�

The fermionic ground state �0
F�x1 ,x2� is given by the Slater

determinant of the two lowest single-particle orbitals, so that

�0
B�x1,x2� =

1
�2

	�0�x1��1�x2� − �0�x2��1�x1�	 =
N
2

e−�x1
2+x1

2�

�
x2U�1

4
−

E0

2
,
1

2
,x1

2� − x1U�1

4
−

E0

2
,
1

2
,x2

2�
 ,

�10�

where N is the normalization factor.
Figure 1 shows the two-particle wave function for the

Tonks molecule in �x1 ,x2� space, given by Eq. �10�, for dif-
ferent values of �. For �=0 �Fig. 1�a�� the nodal line along
x1=x2 reflects the infinite repulsion of the TG limit, or
equivalently the exclusion principle of Eq. �8�. The distribu-
tion of the two-particle wave function shows a strong corre-
lation between an x1�0 and an x20 coordinate and vice
versa. Increasing � to 1, 2, and 
 �Figs. 1�b�–1�d��, the wave
function is reduced along the lines x1=0 and x2=0 due to the
strengthening potential barrier at the origin. In this process
the wave function also becomes increasingly squeezed along
the line x1=−x2, indicating the localization of one particle on

each side of the barrier. We note that for values of ��2 there
is no appreciable change in the two-particle density with bar-
rier strength.

A. Reduced single-particle density

A quantity of fundamental importance in many-body
physics is the reduced single-particle density �RSPD�, given
by �42�

��x,x�� = �
−


+


�0
B�x,x2��0

B�x�,x2�dx2. �11�

The RSPD is illustrated in Fig. 2 for four different barrier
strengths, corresponding to the same values examined in Fig.
1—i.e., �=0 �a�, �=1 �b�, �=2 �c�, and �=
 �d�. The RSPD
expresses the self-correlation, in position space, for a single
particle. Classically, ��x ,x��=��x−x��, and one can see from
Fig. 2 that a strong enhancement of ��x ,x�� exists along the
line x=x�. In the absence of any barrier, Fig. 2�a�, the sig-
nificant off-diagonal contributions reflect the delocalization
of an individual particle. Increasing the barrier strength, as
seen in Figs. 1�b�–1�d�, leads to the emergence of a quadrant
separation. For a stronger barrier the contributions in the
off-diagonal quadrants diminish. In particular, in Fig. 1�d�
these off-diagonal contributions to ��x ,x�� vanish altogether.
The strong barrier restricts tunneling from the left side of the
well to the right and vice versa. In this scenario, the ground
state of the system is comprised of each member of the bo-
son pair in a separate half-well.

B. Momentum distribution

Due to the Bose-Fermi mapping theorem, the density dis-
tributions of a sample of bosons and fermions become iden-
tical in the TG limit; however, the momentum distribution
can still be used for distinction �15�. The reciprocal momen-
tum distribution n�k� is calculated from the reduced single-
particle density:

FIG. 1. �Color online� Ground-state wave function for a boson
pair in a harmonic trap with a � barrier along x1=x2=0 of strength
�a� �=0, �b� �=1, �c� �=2, and �d� �=
. The corresponding scaled
ground-state energies are E0=2.0, 2.4, 2.6, and 3.0, respectively. In
each plot the horizontal and vertical axes run from −6 to +6, in
scaled units.

FIG. 2. �Color online� Reduced single-particle density matrix
for the Tonks molecule for barrier strength �a� �=0, �b� �=1, �c�
�=2, and �d� �=
. Each plot spans the range −6x, x�6.
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n�k� � �2��−1�
−


+
 �
−


+


��x,x��e−ık�x−x��dxdx�, �12�

where −

+
n�k�dk=1. Equivalently, one may obtain the mo-

mentum distribution for this system by considering the di-
agonalization of ��x ,x��. The eigenvalue equation to be
solved is

�
−


+


��x,x���i�x��dx� = �i�i�x� , �13�

where the eigenvalue �i represents the fractional population
of the “natural orbital” �i�x� such that �i�i=1. Using a dis-
cretized form for the quadrature allows one to rewrite the
integral equation �13� as a linear algebraic equation. The
momentum distribution n�k� may then be obtained from the
relation

n�k� = �
i

�i	�i�k�	2, �14�

where �i�k� denotes the Fourier transform of the natural or-
bital �i�x�,

�i�k� =
1

�2�
�

−


+


�i�x�e−ıkxdx . �15�

Figure 3 shows the momentum distribution in the TG limit
for four different values of the barrier strength, �=0, 1, 5,
and 10. As the barrier strength is increased the momentum
distribution becomes broader. This observation is consistent
with the earlier observation that the two separate particles
become individually localized in the two separate half-wells.

In the limit of infinite barrier strength ��=
� the system
becomes doubly degenerate which allows us to calculate an
analytical expression for the momentum distribution. By
changing the computational basis and defining ��x�
= 1

�2
��0�x�+�1�x��, where �0 and �1 are the ground and first-

excited eigenfunctions of the single-particle Hamiltonian �3�,
with �0�x�= 	�1�x�	, we find that the wave function is only
finite in the region x�0. The momentum distribution is then
given by the direct Fourier transform of ��x�:

n�k� =
2

�3/2��1 − k2e−k2/2M�1

2
,
3

2
,
1

2
k2��2

+
�

2
k2e−k2� .

�16�

This analytic momentum distribution, for the case �=
, is
also plotted in Fig. 3. It can be seen that, in the limit of large
�, the momentum distribution calculated from the diagonal-
ization of the RSPD matrix tends towards the profile given
by Eq. �16�.

C. Ground-state entropy

Entanglement is not only a fundamental quantity in quan-
tum mechanics; it is also one of the most important resources
in quantum information theory, where it is often responsible
for the increased efficiency of quantum algorithms over their
classical counterparts. Previous authors have shown that the
von Neumann entropy is a good measure of entanglement for
a system of two bosons �26–28�. In the case of indistinguish-
able particles, however, differentiating between entangled
and nonentangled states requires that one consider, simulta-
neously, both the von Neumann entropy of the reduced
single-particle density and the Schmidt number �29–31�. The
Schmidt number is given by the number of nonzero eigen-
values, �i, of the reduced single-particle density � �see Eq.
�13��. In this work we shall use the von Neumann entropy to
quantify the entanglement in the position coordinates x1 and
x2 of the boson pair and the Schmidt number shall only be
discussed when it affects the interpretation of the results pre-
sented.

The von Neumann entropy S is defined by

S = − �
i

�i log2 �i, �17�

and we calculate the values for �i by numerically diagonal-
izing the RSPD matrix as a function of �. The results are
shown in Fig. 4. Interestingly, one sees that the entropy be-
gins at a value of about 0.985 for �=0, which agrees well
with the limiting value suggested in �26�. As � increases, S is
seen to increase through a value of unity. It peaks for �
�3.4 �corresponding to a ground-state energy of E0�2.85�
before dropping off and tending towards unity in the limit
�→
, corresponding to a nonentangled state. Identification
of this state as nonentangled follows from the fact that the
von Neumann entropy for this state �with an infinite barrier�
equals unity and the Schmidt number is found to equal 2,
�29–31�. In this situation, the ground state of the boson pair
is comprised of one particle residing in the left half-well and
one in the right. However, owing to the indistinguishability
of the particles, one cannot say which particle resides to the
left and which to the right. This lack of information, arising
solely from the indistinguishability of the particles, leads to
the value of 1 for the von Neumann entropy. Pure statistical
correlations are of little intrinsic value to any quantum infor-

FIG. 3. �Color online� Momentum distribution n�k� for �=0, 1,
5 and 10, with the corresponding normalized ground-state energies
E0=2, 2.4, 2.8, and 2.9. The momentum distributions broaden for
increased barrier strength due to the localization of the particles in
separate halves of the trap. Also shown is the momentum distribu-
tion for the �=
 case, given by Eq. �16�, for which E0=3.0.
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mation protocol, and the state is regarded as nonentangled.
By contrast, the point at which S=1 for the finite value of

��1.33 represents an entangled state. This is due to the fact
that the Schmidt number at this point is �2, allowing one to
classify the state as truly entangled, beyond purely statistical
correlations �29–31�.

V. VARIABLE INTERACTION STRENGTH

For finite particle interactions no analytical solution to the
inhomogeneous two-particle problem is known �except in the
case of �=0 �19��. In this section we therefore use a numeri-
cal discretization scheme to study the ground-state properties
of the boson dimer as a function of varying interaction
strength, as well as barrier strength.

Discretization of the spatial coordinates x1 and x2 is
achieved by means of a discrete variable representation
�DVR� �43,44�. The two-particle wave function is repre-
sented by the direct product

��x1,x2� = �
i,j=1

N

�ij f i�x1�f j�x2� . �18�

Here �ij is the value of the two-particle wave function at the
mesh point �x1=qi ,x2=qj�, with i , j=1,2 , . . . ,N. Clearly,
these mesh points are finite in number and will be restricted
to some region in �x1 ,x2� space, defined by the boundaries a
and b, such that

a  qi  b, i = 1,2, . . . ,N . �19�

The values �ij play the role of variational parameters to be
found and the f i�q� are a set of N Lagrange functions which
have the property that they are localized about the mesh

points q1 ,q2 , . . . ,qN. In addition to satisfying the usual inter-
polation conditions

f i�qj� = �ij ∀ i, j , �20�

one also requires that these Lagrange functions satisfy the
orthogonality condition

�
a

b

f i
*�q�f j�q�dq = �i�ij . �21�

Here �i are the generalized Christoffel numbers associated
with the mesh �43� and

�i = 1 ∀ i �22�

for the Cartesian mesh considered in this work. For this Car-
tesian mesh the Lagrange functions are given by

f i�q� =
1

N

sin���q − i��
sin���q − i�/N�

. �23�

Using the basis expansion of Eq. �18� in the Schrödinger
equation �4� results in a discrete eigenvalue problem that can
be solved using standard linear algebra techniques.

A. Reduced single-particle density

We have calculated ��x ,x�� using N=81 mesh points in
each dimension �i.e., x1 and x2� and a mesh spacing of �x
=0.16. Color density plots of the reduced single-particle den-
sity are presented in Fig. 5 for four different values of inter-
action strength and four different values of barrier strength.
Each row illustrates the transition from a noninteracting pair
�g1D=0� to a strongly interacting dimer �g1D=500�, and each
column illustrates the transition from a single well ��=0� to
an, essentially, split trap ��=10�.

In the first column of Fig. 5 the noninteracting limit
�g1D=0� is considered. The increased barrier strength at the

0 5 10 15 20
0.985

0.990

0.995

1.000

1.005

κ

S

1 2 3 4 5
0

0.2

0.4

0.6
κ=1.33

1 2 3 4 5
0

0.2

0.4

0.6
κ=∞

FIG. 4. �Color online� von neumann entropy S for the Tonks
molecule as a function of the barrier strength �. When �=0, then
S�0.985. As the barrier is strengthened the entropy increases to a
maximum at ��3.4. In the limit of �→
, then S→1, correspond-
ing to a nonentangled state. The bar charts show the values of the
Schmidt numbers at the point where ��=1.33, S=1� and for the
limit ��=
, S=1�.

FIG. 5. �Color online� RSPD ��x ,x�� as a function of interaction
strength g1D=0, 1, 5, and 500 and barrier strength �=0, 1, 2, and
10. Each individual plot spans the range −6.4x, x�6.4.
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origin manifests itself by diminishing ��x ,x�� along the lines
x=0 and x�=0, thus partitioning the structure into four quad-
rants. The even division of ��x ,x�� over all four quadrants
reflects the delocalization of each individual particle over the
two half-wells.

The second column of Fig. 5 shows the same color den-
sity plots for �=0, 1, 2, and 10 for a finite interaction
strength of g1D=1. In the absence of a barrier ��=0� the
RSPD exhibits similar features to the noninteracting case,
although it expands slightly in both x and x�. Strengthening
the barrier again gives rise to a quadrant structure. However,
the presence of repulsion reduces ��x ,x�� in the off-diagonal
quadrants, meaning that the initial detection of a particle in
the left half-well precludes its subsequent detection in the
right half-well and vice versa. Analogously to the Bose-
Hubbard model, the system will be governed by the interplay
between the tunneling �determined by the strength of the
barrier, �� and the on-site interaction �determined by the in-
teraction parameter g1D�. For a strong barrier ��=10� and
finite interaction, there is a blockade and the insulator state
dominates, with one boson in each half-well. In terms of the
reduced single-particle density ��x ,x��, this leads to a van-
ishing of the off-diagonal contributions as tunneling of a
given particle between the two half-wells becomes increas-
ingly unlikely. This behavior is increasingly visible in the
third and fourth columns when the interaction strength is
increased to g1D=5 and 500, respectively.

As the interaction strength increases, the first plot in the
third column shows a clear deviation from the circular struc-
ture observed in the �=0 case for lower interaction strength.
The distribution is now clearly enhanced along the line x
=x� and reduced in the direction orthogonal to this. The
stronger repulsive interaction has the effect of reducing the
“delocalization” of the particles. As the barrier strength is
increased the off-diagonal contributions die off faster than in
the case g1D=1. This is due to the stronger interactions en-
couraging the localization of the particles at even smaller
barrier strengths. The superfluid character, which is indicated
by the quadrant structure, decays already for smaller values
of �. As in the case of g1D=1, as the barrier strength is
increased one observes a reduction in the off-diagonal con-
tributions, and in the limit of large �, one observes the, al-
most perfect, localization of the two particles in the two
separate half-wells.

Finally, the last column illustrates ��x ,x�� for very strong
repulsion g1D=500. As one expects, the reduced single-
particle densities closely resemble the plots displayed in Fig.
2 for the Tonks molecule.

As discussed, the transition from conductor to insulator
regimes is characterized by the reduction, and eventual van-
ishing, of the off-diagonal contributions to ��x ,x��. To exam-
ine this behavior from another perspective, the off-diagonal
order for the system may be quantified using the parameter
Q, defined as

Q � �
−


+


��x,− x�dx . �24�

The variation of this quantity with increasing barrier
strength � is shown in Fig. 6. Three different values for the

interaction coupling �g1D=1, 2, and 5� are illustrated. The
limiting cases of g1D=0 and g1D=
 lead, identically, to val-
ues of Q=1 and 0, respectively. The limit �→
 corresponds
to the insulator limit, while for �→0 one is considering the
conductor limit.

B. Momentum distribution

The momentum distributions n�k� can be obtained from
the reduced single-particle density ��x ,x�� using the same
methods outlined in Sec. IV B.

Figure 7�a� shows the distribution obtained for two non-
interacting particles �g1D=0� for varying �. In this case, the
momentum distribution is given by the square of the single-

0 2 4 6 8 10
κ
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0.8
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g1D = 1

g1D = 2

g1D = 5

FIG. 6. �Color online� Quantity Q���x−x�dx, as a function of
barrier strength �. Three intermediate values of g1D are considered:
1 �solid line, black�, 2 �dashed line, red�, and 5 �dotted line, green�.
For sufficiently high g1D and � one is considering the insulator
regime for which Q will effectively vanish.

FIG. 7. �Color online� Momentum distributions for varying in-
terparticle interaction strength g1D=0 �a�, 1 �b�, 5 �c�, and 500 �d�.
Within each plot the distribution is considered for different values
of the barrier strength: �=0 �solid line, black�, 1 �dashed line, red�,
5 �dash-dotted line, green�, and 10 �dotted line, blue�. These calcu-
lations have been carried out by means of DVR discretization of the
spatial coordinates x1 and x2, with N=61 DVR mesh points in each
dimension and a scale factor of �x=0.16.
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particle wave function in momentum space, 	��k�	2. In the
limit of an infinitely strong barrier the single-particle wave
function becomes �0�x�= �2 /���1/2	x	e−x2/2 and we can cal-
culate the momentum distribution analytically,

n�k� =
4

�3/2�1 − k2e−k2/2M�1

2
,
3

2
,
1

2
k2��2

. �25�

The interplay between the first and second terms gives rise to
the secondary peaks seen in Fig. 7�a� for �=2, 5, and 10.
Physically, these peaks arise due to the interference of the
particle, split between the two separate half-wells, in analogy
with a double-slit arrangement. When increasing the interac-
tion strength �Figs. 7�b�–7�d�� these secondary peaks disap-
pear, which can be attributed to the increased localization of
the particles.

At the same time as observing the emergence of these
secondary peaks with increased barrier strength for g1D=0,
one also observes a narrowing of the central peak. Strength-
ening of the barrier causes the ground state to shift upwards
in energy; this shift will be accompanied by a spreading of
the single-particle wave function in position space, which in
turn gives rise to a reciprocal narrowing in momentum space.

Figures 7�c� and 7�d� display the momentum distribution
in the limit of strong repulsive interactions with the same
basic trends being observed in both plots. Once again, as
with the reduced single-particle density, this fact suggests
that the behavior of the ground state remains fairly constant
for interaction coupling g1D�5, such that these finite values
of interaction coupling will lead to behavior which is quali-
tatively similar to the regime of infinite repulsive interaction.
The results presented for strong repulsive interaction �g1D
=500� are expected to correlate closely with the momentum
distribution obtained in Sec. IV B for the Tonks molecule,
and a detailed comparison of Figs. 3 and 7�d� verifies that
this is the case.

In the large interaction limit the momentum distribution
for �=0 is observably different from the noninteracting case
�solid, black lines in Figs. 7�a� and 7�d��. In particular non-
Gaussian wings extending to higher k values are observed in
the TG regime. One may consider the trapping potential to
be switched off suddenly and the two-particle wave function
allowed to expand freely. In this case the wave function in
coordinate space will map onto that in momentum space in
the far-field limit. Clearly, the strong repulsion between the
particles in the TG limit will lead to a proportion of the
ensemble mutually recoiling at high speeds and in this way
accounting for these high-k wings in the momentum distri-
bution. Increasing the strength of the barrier then has the
effect of broadening the momentum distribution as the indi-
vidual particles become localized to individual sides of the
trap. The wings in the momentum distribution are, therefore,
a signal of a transition into a Mott-insulator-type state. The
spatial localization of the particles is accompanied by a
broadening in the momentum distribution, and this is the
broadening observed in Figs. 7�c� and 7�d�.

C. Ground-state entropy

1. Variation of entropy with interaction strength

Let us first examine how the entropy of the two-particle
system varies as one changes the interaction strength be-

tween the particles. Similar calculations have been carried
out by other authors �26�, though restricted to a harmonic
trap without a barrier. This case is represented as the lowest
�black� line in Fig. 8. For g1D=0 entanglement is absent and
S=0. As the interaction strength is increased the entangle-
ment increases. For g1D→
 the entropy saturates at a value
of S�0.985 in the absence of any barrier �26�. Also shown
in Fig. 8 is the variation in the entropy with interaction
strength when one introduces a � barrier at the well centre.
Four different barrier strengths are plotted: �=1 �dashed
line�, 2 �dash-dotted line�, 5 �dash-double-dotted line�, and
10 �dotted line�. One striking behavior is noted: as one in-
creases the barrier strength, the sensitivity of S to small
changes in g1D, about g1D=0, is dramatically increased. As
the barrier strength is increased the harmonic trap is split into
two half-wells and the tunneling between these two half-
wells is made increasingly unfeasible. As a consequence, the
ground state of the two-particle system is less capable of
adapting to changes in the interaction strength between the
particles, leading to an increased sensitivity of the entropy in
this respect. For all values of �, as g1D→
 the entropy tends
to a value close to unity �see Fig. 4�.

2. Variation of entropy with barrier strength

Finally, we present the results of how the entropy of the
two-particle system changes with the strength of the central
barrier in Fig. 9. For the case of zero interactions the entropy
remains zero for all barrier strengths. In the presence of a
finite interaction the entropy begins with a nonzero value,
representing the entanglement in the harmonic trap with no
barrier. As the barrier is strengthened the entropy increases
gradually towards unity and saturates at this value. As was
discussed in Sec. IV C, in the limit of infinite barrier
strength, the two-particle system will become nonentangled.

FIG. 8. �Color online� Effect of varying interaction strength
�g1D� on the von Neumann entropy �S� of the ground state. The
strength of the � barrier is taken to be �=0 �thick solid line�, 1
�dashed line�, 2 �dash-dotted line�, 5 �dash-double-dotted line�, and
10 �dotted line�. It is seen that for increased strength of the central
barrier, the entropy shows an increased sensitivity to the interaction
parameter about the value g1D=0.

BOSON PAIRS IN A ONE-DIMENSIONAL SPLIT TRAP PHYSICAL REVIEW A 76, 053616 �2007�

053616-7



This is due to the fact that, in order to minimize the energy of
the system, the repulsively interacting particles will localize
on opposite sides of the well. The only correlations that then
exist between the particles can be attributed to their indistin-
guishable nature.

In the limit of vanishing barrier strength, the larger the
interaction strength, the larger is the initial value of the en-
tropy. As a consequence, for larger values of g1D the entropy
changes less dramatically as the barrier strength is increased.
It is noted that for the case of g1D=500 �dotted line� we are
effectively considering the TG regime. From Fig. 9 it appears
that in this regime the entropy remains close to unity for all
values of �. However, closer inspection of these numerical
results reveals that this curve actually follows the same trend
as illustrated in Fig. 4, obtained from the analytical treatment
of the Tonks molecule. This further illustrates the correspon-
dence of these DVR mesh calculations to the analytical TG
results in the limit of infinite repulsive interactions.

VI. CONCLUSIONS

In the present work we have carried out a detailed exami-
nation of the ground state for two particles in a �-split har-
monic trap. We have found that in the presence of interac-
tions the reduced single-particle density exhibits vanishing
contributions in the off-diagonal quadrants in the limit of

increasing barrier strength. This feature is attributed to the
localization of individual particles on either side of the split
trap, a situation analogous to the Mott insulator regime in
lattice studies and also reflected in the corresponding mo-
mentum distributions. More specifically, in the noninteract-
ing case with a strong barrier one observes secondary peaks
in the momentum density, attributed to interference. These
secondary peaks vanish in the presence of interactions owing
to the localization of individual particles. In the Tonks-
Girardeau limit, increasing the barrier strength has the effect
of broadening the momentum distribution, a feature that may
be explained in terms of the squeezing of the wave function
for the system in position space. Finally, we have shown that
the von Neumann entropy for this system is sensitive to the
two parameters of interaction strength and barrier strength.
For a given barrier strength, an increasingly repulsive inter-
action strength will cause the von Neumann entropy to satu-
rate at a value close to unity. It is found that increasing the
strength of the barrier has the effect of making the von Neu-
mann entropy increasingly sensitive to small changes in the
interaction coupling about the value of zero coupling. At the
same time, for a fixed value of interaction strength, increas-
ing the barrier strength has the effect of increasing the en-
tropy of the system. In the limit �→
 the entropy saturates
at a value of unity.

We would like to remark that even though our analysis
makes use of an idealized �-function potential, such an ap-
proximation is known to, not only, encapsulate the basic
physics, but can also be a very good approximation to ex-
perimental setups. These include wide traps that are pierced
by a highly focused laser beam as well as situations where a
single particle of a different kind is confined at the center of
the trap. As the oscillator length is proportional to �m��−1/2,
a single order of magnitude in length-scale difference can be
achieved by working with atoms of different mass. A second,
even more adequate situation is given by the experiments
currently under development that trap ions within a cloud of
cold atoms. The ion traps in these cases have typical frequen-
cies of several 100 kHz and therefore provide a very local-
ized impurity. Due to the low temperatures, the interaction
with such an atomic quantum dot would be well described by
a pointlike potential.
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FIG. 9. �Color online� Effect of varying barrier strength on the
von Neumann entropy S of the ground state. The strength of the
interparticle interaction is set to g1D=1 �solid line�, 2 �dashed line�,
5 �dash-dotted line�, and 500 �dotted line�. The initial value of the
entropy �i.e., in the absence of any barrier� is dictated by the
strength of the interparticle interaction, with larger interaction lead-
ing to increased entropy. One observes that in all cases, in the limit
of a strong barrier, the von Neumann entropy saturates at a value
S=1.
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