24,052 research outputs found

    Sketch-based virtual human modelling and animation

    Get PDF
    Animated virtual humans created by skilled artists play a remarkable role in today’s public entertainment. However, ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. We developed a new method and a novel sketching interface, which enable anyone who can draw to “sketch-out” 3D virtual humans and animation. We devised a “Stick FigureFleshing-outSkin Mapping” graphical pipeline, which decomposes the complexity of figure drawing and considerably boosts the modelling and animation efficiency. We developed a gesture-based method for 3D pose reconstruction from 2D stick figure drawings. We investigated a “Creative Model-based Method”, which performs a human perception process to transfer users’ 2D freehand sketches into 3D human bodies of various body sizes, shapes and fat distributions. Our current system supports character animation in various forms including articulated figure animation, 3D mesh model animation, and 2D contour/NPR animation with personalised drawing styles. Moreover, this interface also supports sketch-based crowd animation and 2D storyboarding of 3D multiple character interactions. A preliminary user study was conducted to support the overall system design. Our system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Sketching-out virtual humans: A smart interface for human modelling and animation

    Get PDF
    In this paper, we present a fast and intuitive interface for sketching out 3D virtual humans and animation. The user draws stick figure key frames first and chooses one for “fleshing-out” with freehand body contours. The system automatically constructs a plausible 3D skin surface from the rendered figure, and maps it onto the posed stick figures to produce the 3D character animation. A “creative model-based method” is developed, which performs a human perception process to generate 3D human bodies of various body sizes, shapes and fat distributions. In this approach, an anatomical 3D generic model has been created with three distinct layers: skeleton, fat tissue, and skin. It can be transformed sequentially through rigid morphing, fatness morphing, and surface fitting to match the original 2D sketch. An auto-beautification function is also offered to regularise the 3D asymmetrical bodies from users’ imperfect figure sketches. Our current system delivers character animation in various forms, including articulated figure animation, 3D mesh model animation, 2D contour figure animation, and even 2D NPR animation with personalised drawing styles. The system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations

    Get PDF
    A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations

    Microlensing of collimated Gamma-Ray Burst afterglows

    Get PDF
    We investigate stellar microlensing of the collimated gamma-ray burst afterglows. A spherical afterglow appears on the sky as a superluminally expanding thin ring (``ring-like'' image), which is maximally amplified as it crosses the lens. We find that the image of the collimated afterglow becomes quite uniform (``disk-like'' image) after the jet break time (after the Lorentz factor of the jet drops below the inverse of the jet opening angle). Consequently, the amplification peak in the light curve after the break time is lower and broader. Therefore detailed monitoring of the amplification history will be able to test whether the afterglows are jets or not, i.e., ``disk-like'' or not, if the lensing occurs after the break time. We also show that some proper motion and polarization is expected, peaking around the maximum amplification. The simultaneous detection of the proper motion and the polarization will strengthen that the brightening of the light curve is due to microlensing.Comment: 16 pages, 6 figures, accepted for publication in Ap

    A 1.3 cm line survey toward IRC +10216

    Full text link
    IRC +10216 is the prototypical carbon star exhibiting an extended molecular circumstellar envelope. Its spectral properties are therefore the template for an entire class of objects. The main goal is to systematically study the λ\lambda \sim1.3 cm spectral line characteristics of IRC +10216. We carried out a spectral line survey with the Effelsberg-100 m telescope toward IRC +10216. It covers the frequency range between 17.8 GHz and 26.3 GHz (K-band). In the circumstellar shell of IRC +10216, we find 78 spectral lines, among which 12 remain unidentified. The identified lines are assigned to 18 different molecules and radicals. A total of 23 lines from species known to exist in this envelope are detected for the first time outside the Solar System and there are additional 20 lines first detected in IRC +10216. The potential orgin of "U" lines is also discussed. Assuming local thermodynamic equilibrium (LTE), we then determine rotational temperatures and column densities of 17 detected molecules. Molecular abundances relative to H2_{2} are also estimated. A non-LTE analysis of NH3_{3} shows that the bulk of its emission arises from the inner envelope with a kinetic temperature of 70±\pm20 K. Evidence for NH3_{3} emitting gas with higher kinetic temperature is also obtained, and potential abundance differences between various 13^{13}C-bearing isotopologues of HC5_{5}N are evaluated. Overall, the isotopic 12^{12}C/13^{13}C ratio is estimated to be 49±\pm9. Finally, a comparison of detected molecules in the λ\lambda \sim1.3 cm range with the dark cloud TMC-1 indicates that silicate-bearing molecules are more predominant in IRC +10216.Comment: 32 pages, 9 figures, Accepted by A&

    The influence of baryons on the mass distribution of dark matter halos

    Get PDF
    Using a set of high-resolution N-body/SPH cosmological simulations with identical initial conditions but run with different numerical setups, we investigate the influence of baryonic matter on the mass distribution of dark halos when radiative cooling is NOT included. We compare the concentration parameters of about 400 massive halos with virial mass from 101310^{13} \Msun to 7.1×10147.1 \times 10^{14} \Msun. We find that the concentration parameters for the total mass and dark matter distributions in non radiative simulations are on average larger by ~3% and 10% than those in a pure dark matter simulation. Our results indicate that the total mass density profile is little affected by a hot gas component in the simulations. After carefully excluding the effects of resolutions and spurious two-body heating between dark matter and gas particles, we conclude that the increase of the dark matter concentration parameters is due to interactions between baryons and dark matter. We demonstrate this with the aid of idealized simulations of two-body mergers. The results of individual halos simulated with different mass resolutions show that the gas profiles of densities, temperature and entropy are subjects of mass resolution of SPH particles. In particular, we find that in the inner parts of halos, as the SPH resolution increases the gas density becomes higher but both the entropy and temperature decrease.Comment: 8 pages, 6 figures, 1 table, ApJ in press (v652n1); updated to match with the being published versio

    The Luminosity Function of high-redshift QSOs - A combined analysis of GOODS and SDSS

    Get PDF
    Aims: In this work the luminosity function of QSOs is measured in the redshift range 3.5<z<5.2 for the absolute magnitude interval -21<M_{145}<-28. The determination of the faint end of the luminosity function at these redshifts provides important constraints on models of joint evolution of galaxies and AGNs. Methods: We have defined suitable criteria to select faint QSOs in the GOODS fields, checking in detail their effectiveness and completeness. Spectroscopic follow-up of the resulting QSO candidates has been carried out. The confirmed sample of faint QSOs is compared with a brighter one derived from the SDSS. We have used a Monte-Carlo technique to estimate the properties of the luminosity function, checking various parameterizations for its shape and evolution. Results: Models based on Pure Density Evolution show better agreement with observation than models based on Pure Luminosity Evolution. However a different break magnitude with respect to z~2.1 is required at 3.5<z<5.2. Models with a steeper faint end score a higher probability. We do not find any evidence for a flattening of the bright end at redshift z>3.5. Conclusions: The estimated space density evolution of QSOs indicates a suppression of the formation and/or feeding of Supermassive Black Holes at these redshifts. The QSO contribution to the UV background is insufficient to ionize the IGM at 3.5<z<5.2.Comment: 17 pages, 13 ps figures, A&A accepted. Updated to journal versio
    corecore