63 research outputs found

    A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly selected for in pathogenic infection

    Get PDF
    The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734–736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo

    Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia.

    Get PDF
    No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD

    Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    Get PDF
    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention

    Development and characterization of highly oriented PAN nanofiber

    No full text
    A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN) nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF) at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min

    A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V.

    No full text
    Coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34 depends on interaction of a lectin on A. viscosus T14V with a cell surface carbohydrate on S. sanguis 34. This carbohydrate was isolated, and its chemical makeup was established. The carbohydrate remained attached to S. sanguis 34 cells through extraction with Triton X-100 and treatment with pronase. It was cleaved from the cell residue by autoclaving and purified by differential centrifugation and column chromatography on DEAE-Sephacel and Sephadex G-75. The polysaccharide contained phosphate which was neither inorganic nor monoester. Treatment with NaOH-NaBH4, followed by Escherichia coli alkaline phosphatase, or with 48% HF at 4 degrees C, followed by NaBH4, yielded inorganic phosphate and oligosaccharide alditols. Therefore, the polysaccharide is composed of oligosaccharide units joined together by phosphodiester bridges. The structure and stereochemistry of the main oligosaccharide alditol was established previously (F. C. McIntire, C. A. Bush, S.-S. Wu, S.-C. Li, Y.-T. Li, M. McNeil, S. Tjoa, and P. V. Fennessey, Carbohydr. Res. 166:133-143). Permethylation analysis, 1H and 31P nuclear magnetic resonance studies on the whole polysaccharide revealed the position of the phosphodiester linkages. The polysaccharide is mainly a polymer of (6) GalNAc(alpha 1-3)Rha(beta 1-4)Glc(beta 1-6)Galf(beta 1-6)GalNAc(beta 1- 3)Gal(alpha 1)-OPO3. It reacted as a single antigen with antiserum to S. sanguis 34 cells and was a potent inhibitor of coaggregation between A. viscosus T14V and S. sanguis 34. Quantitative inhibition of precipitation assays with oligosaccharides, O-allyl N-acetylgalactosaminides, and simple sugars indicated that specific antibodies were directed to the GalNAc end of the hexasaccharide unit. In contrast, coaggregation was inhibited much more effectively by saccharides containing betaGalNAc. Thus, the specificity of the A. viscosus T14V lectin is strikingly different from that of antibodies directed against the S. sanguis 34 polysaccharide

    Timing of initiation of anti-retroviral therapy predicts post-treatment control of SIV replication.

    No full text
    One approach to 'functional cure' of HIV infection is to induce durable control of HIV replication after the interruption of antiretroviral therapy (ART). However, the major factors that determine the viral 'setpoint' level after treatment interruption are not well understood. Here we combine data on ART interruption following SIV infection for 124 total animals from 10 independent studies across 3 institutional cohorts to understand the dynamics and predictors of post-treatment viral control. We find that the timing of treatment initiation is an important determinant of both the peak and early setpoint viral levels after treatment interruption. During the first 3 weeks of infection, every day of delay in treatment initiation is associated with a 0.22 log10 copies/ml decrease in post-rebound peak and setpoint viral levels. However, delay in initiation of ART beyond 3 weeks of infection is associated with higher post-rebound setpoint viral levels. For animals treated beyond 3 weeks post-infection, viral load at ART initiation was the primary predictor of post-rebound setpoint viral levels. Potential alternative predictors of post-rebound setpoint viral loads including cell-associated DNA or RNA, time from treatment interruption to rebound, and pre-interruption CD8+ T cell responses were also examined in the studies where these data were available. This analysis suggests that optimal timing of treatment initiation may be an important determinant of post-treatment control of HIV
    • …
    corecore