24 research outputs found

    Characterization of Coupled Ground State and Excited State Equilibria by Fluorescence Spectral Deconvolution

    Get PDF
    Fluorescence probes with multiparametric response based on the relative variation in the intensities of several emission bands are of great general utility. An accurate interpretation of the system requires the determination of the number, positions and intensities of the spectral components. We have developed a new algorithm for spectral deconvolution that is applicable to fluorescence probes exhibiting a two-state ground-state equilibrium and a two-state excited-state reaction. Three distinct fluorescence emission bands are resolved, with a distribution of intensities that is excitation-wavelength-dependent. The deconvolution of the spectrum into individual components is based on their representation as asymmetric Siano-Metzler log-normal functions. The application of the algorithm to the solvation response of a 3-hydroxychromone (3HC) derivative that exhibits an H-bonding-dependent excited-state intramolecular proton transfer (ESIPT) reaction allowed the separation of the spectral signatures characteristic of polarity and hydrogen bonding. This example demonstrates the ability of the method to characterize two potentially uncorrelated parameters characterizing dye environment and interactions

    Injection therapy and denervation procedures for chronic low-back pain: a systematic review

    Get PDF
    Injection therapy and denervation procedures are commonly used in the management of chronic low-back pain (LBP) despite uncertainty regarding their effectiveness and safety. To provide an evaluation of the current evidence associated with the use of these procedures, a systematic review was performed. Existing systematic reviews were screened, and the Cochrane Back Review Group trial register was searched for randomized controlled trials (RCTs) fulfilling the inclusion criteria. Studies were included if they recruited adults with chronic LBP, evaluated the use of injection therapy or denervation procedures and measured at least one clinically relevant outcome (such as pain or functional status). Two review authors independently assessed studies for eligibility and risk of bias (RoB). A meta-analysis was performed with clinically homogeneous studies, and the GRADE approach was used to determine the quality of evidence. In total, 27 RCTs were included, 14 on injection therapy and 13 on denervation procedures. 18 (66%) of the studies were determined to have a low RoB. Because of clinical heterogeneity, only two comparisons could be pooled. Overall, there is only low to very low quality evidence to support the use of injection therapy and denervation procedures over placebo or other treatments for patients with chronic LBP. However, it cannot be ruled out that in carefully selected patients, some injection therapy or denervation procedures may be of benefit

    Hemin-dependent induction and internalization of CD38 in K562 cells.

    No full text
    The cell surface antigen, CD38, is a bifunctional ecto-enzyme, which is predominantly expressed on hematopoietic cells during differentiation. In the present study, it is shown that hemin treatment of K562 cells gives rise to induction of enzymatic activities inherent to CD38. GDP-ribosyl cyclase activity, an indicator of CD38, increased initially in response to hemin in a time-dependent manner, reached a maximum level on the 5th day and, thereafter, declined sharply to the initial level. The increase in NAD(+) glycohydrolase and ADP-ribose uptake activities followed a similar time course. However, the decline in the latter activities after the 5th day of induction appeared to be rather slow in contrast to GDP-ribosyl cyclase activity. The time course of these changes was well correlated with the FACScan findings obtained by use of anti-CD38 monoclonal antibody. SDS-PAGE and Western blot analyses by use of the monoclonal antibody OKT10 revealed a transient hemin-dependent appearence of a 43 kDa membrane protein with maximum signal intensity on the first 4 days of incubation. There was subsequently a gradual decrease on the 5th day, concomitant with a reciprocal increase in activity of the internalized protein fraction. The results together indicated that hemin-induced expression of CD38 was followed by its down-regulation. (C) 2003 Wiley-Liss, Inc

    Physicochemical properties of low molecular weight alkylated chitosans: A new class of potential nonviral vectors for gene delivery

    Full text link
    Low molecular weight chitosans grafted with N-/2(3)-(dodec-2-enyl)succinoyl groups (HM-LMW-chitosans) with a mean molecular mass of 5 kDa, a degree of acetylation of 3% and a degree of tetradecenoyl substitution (TDC) of 3-18 mol% have been synthesized. These molecules are monodisperse and soluble in water at neutral pH. Using tensiometry and Nile Red fluorescence, the HM-LMW-chitosans were found to form micelles through hydrophobic interactions involving their tetradecenoyl chains and nonprotonated glucosamine monomers. Their critical micelle concentration decreases with increasing TDC values but varies little with pH and salt. Interaction with large unilamellar vesicles taken as model membranes indicated that HM-LMW-chitosans interact mainly with vesicles mimicking the inner leaflet of biomembranes both through electrostatic and hydrophobic interactions. This preferential interaction may destabilize endosomal membranes and favor the DNA release into the cytoplasm in gene delivery applications. Moreover, since this interaction significantly decreased the membrane fluidity of these vesicles, the HM-LMC-chitosans are thought to exhibit limited lateral mobility and flip-flop ability, and thus, limited cytotoxicity. These properties suggest that the HM-LMW-chitosans may constitute a promising new class of nonviral vectors for gene therapy. (C) 2006 Elsevier B.V. All rights reserved
    corecore