179 research outputs found

    Oxygen-ionic conductors based on substituted bismuth molybdates with column-type structural fragments

    Full text link
    The possibility of synthesizing oxygen-ionic conductors from substituted bismuth molybdates containing [Bi12O14] n 8n+ columns, MoO4 tetrahedra, and isolated Bi ions in their structure was studied. The specifics of their structure and electric conductivity were investigated. The general formula of the solid solutions can be recorded as Bi13Mo5 - x Me x O 34 - δ, where Me is the fouror five-valent d metal (Ti, Zr, V, Nb). The electric conductivity of doped bismuth molybdates considerably increased compared with that of the matrix compound. The electric conductivity reached 5.5 × 10-3 S cm-1 at 700 C and 1.8 × 10-4 S cm-1 at 350 C for the zirconium-doped compound with x = 0.4. The porosity of the ceramics was less than 5%; the thermal expansion coefficient was of the order of 14 × 10-6 K-1. Based on the set of their characteristics, these compounds are recommended as materials for membranes of electrochemical devices. © 2013 Pleiades Publishing, Ltd

    Chiral phase transitions in strong chromomagnetic fields at finite temperature and dimensional reduction

    Get PDF
    Dynamical fermion mass generation in external chromomagnetic fields is considered at non--zero temperature. The general features of dynamical chiral symmetry breaking (DχSBD\chi SB) are investigated for several field configurations in relation to their symmetry properties and the form of the quark spectrum. According to the fields, there arises dimensional reduction by one or two units. In all cases there exists DχSBD\chi SB even at weak quark attraction, confirming the idea about the dimensional insensitivity of this mechanism in a chromomagnetic field.Comment: LATEX file, 12 pages, no figure

    Structure and electrical conductivity of cobalt-doped Bi 26Mo10O69

    Full text link
    The existence boundaries, structures, and transport parameters of Bi 1 - x Co x [Bi12O14]Mo 5O20 ± δ and Bi[Bi12O 14]Mo5 - y Co y O20 ± δ solid solutions, which have a unique columnar structure, were studied. Electrical conductivity in these solid solutions was studied by impedance spectroscopy. © 2013 Pleiades Publishing, Ltd

    Neutrino magnetic moment in a magnetized plasma

    Full text link
    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.Comment: 7 page, 1 figures, based on the talk presented by E.N.Narynskaya at the XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010, to appear in the Proceeding

    Structural and transport characteristics of substituted bismuth niobates

    Full text link
    The results of studying solid solutions with the composition of Bi 3Nb1 - y Zr y O7 ± δ, Bi2.95Y0.05Nb1 - y Zr y O 7 ± δ (y = 0-0.5; Δy = 0.1), and Bi 6.95Y0.05Nb2 - y Zr y O 15.5 (y = 0.1-1; Δy = 0.1) are presented. XRD and electron microscopy with X-ray microanalysis are used to determine the homogeneity regions of solid solutions; crystallochemical parameters are calculated. It is shown that irrespective of the ratio of Bi: Nb, two cubic phases are formed at an increase in the dopant amount. One of these represents a solid solution based on Bi3NbO7 (δ-phase) and the second one is a solid solution based on δ-Bi2O3 (δ′-phase). Conductivity of sintered samples is studied using the impedance spectroscopy technique. Introduction of yttrium into the bismuth sublattice results in no increase in conductivity of solid solutions, while in the case of the ratio of Bi: Nb = 3: 1, overall conductivity of solid solutions is somewhat higher at similar dopant concentrations. © 2013 Pleiades Publishing, Ltd

    Synthesis, structure, and conductivity of BINBVOX ceramics

    Full text link
    The preparation and the structure and transport characteristics of Bi 4V2 - x Nb x O11 (BINBVOX) were studied. A comparative analysis of the synthesis of solid solutions was performed. The sintering of ceramics and the electrical conductivity as a function of temperature, composition and partial oxygen pressure were studied. © 2013 Pleiades Publishing, Ltd

    Electrochemical characteristics, thermal and chemical compatibility in the La0.7Sr0.3CoO3 electrode-γ-BIFEVOX electrolyte system

    Full text link
    The electrochemical characteristics and compatibility of components of the electrode-electrolyte system, where the electrolyte is chosen to be γ-BIFEVOX compositions crystallizing in a stable tetragonal phase and the cathode material is chosen to be composite electrodes of composition La 0.7Sr0.3CoO3 + Bi4V 1.7Fe0.3O11-δ, were studied. © 2013 Pleiades Publishing, Ltd

    ASSESSMENT OF RADIATION RISKS WITH TIME-DISTRIBUTED EXPOSURE

    Full text link
    This article assesses the radiation risks of occupational exposure. Based on the calculations obtained, conclusions are drawn about the discrepancy between radiation safety standards in accordance with dose limits and radiation risks

    Energy States of Colored Particle in a Chromomagnetic Field

    Get PDF
    The unitary transformation, which diagonalizes squared Dirac equation in a constant chromomagnetic field is found. Applying this transformation, we find the eigenfunctions of diagonalized Hamiltonian, that describe the states with definite value of energy and call them energy states. It is pointed out that, the energy states are determined by the color interaction term of the particle with the background chromofield and this term is responsible for the splitting of the energy spectrum. We construct supercharge operators for the diagonal Hamiltonian, that ensure the superpartner property of the energy states.Comment: 25 pages, some calculation details have been removed, typos correcte

    Systems of Hess-Appel'rot Type and Zhukovskii Property

    Full text link
    We start with a review of a class of systems with invariant relations, so called {\it systems of Hess--Appel'rot type} that generalizes the classical Hess--Appel'rot rigid body case. The systems of Hess-Appel'rot type carry an interesting combination of both integrable and non-integrable properties. Further, following integrable line, we study partial reductions and systems having what we call the {\it Zhukovskii property}: these are Hamiltonian systems with invariant relations, such that partially reduced systems are completely integrable. We prove that the Zhukovskii property is a quite general characteristic of systems of Hess-Appel'rote type. The partial reduction neglects the most interesting and challenging part of the dynamics of the systems of Hess-Appel'rot type - the non-integrable part, some analysis of which may be seen as a reconstruction problem. We show that an integrable system, the magnetic pendulum on the oriented Grassmannian Gr+(4,2)Gr^+(4,2) has natural interpretation within Zhukovskii property and it is equivalent to a partial reduction of certain system of Hess-Appel'rot type. We perform a classical and an algebro-geometric integration of the system, as an example of an isoholomorphic system. The paper presents a lot of examples of systems of Hess-Appel'rot type, giving an additional argument in favor of further study of this class of systems.Comment: 42 page
    corecore