9,205 research outputs found

    The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation

    Full text link
    It is believed that the modification of Newtonian dynamics (MOND) is possible alternate for dark matter hypothesis. Although Bekenstein's TeVeS supplies a relativistic version of MOND, one may still wish a more concise covariant formulism of MOND. In this paper, within covariant geometrical framwork, we present another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and Lorentz invariance violation.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1111.1383 and arXiv:1108.344

    Associations of Dwarf Galaxies

    Full text link
    Hubble Space Telescope Advanced Cameras for Surveys has been used to determine accurate distances for 20 galaxies from measurements of the luminosity of the brightest red giant branch stars. Five associations of dwarf galaxies that had originally been identified based on strong correlations on the plane of the sky and in velocity are shown to be equally well correlated in distance. Two more associations with similar properties have been discovered. Another association is identified that is suggested to be unbound through tidal disruption. The associations have the spatial and kinematic properties expected of bound structures with 1 - 10 x 10^11 solar mass. However, these entities have little light with the consequence that mass-to-light ratios are in the range 100 - 1000 in solar units. Within a well surveyed volume extending to 3 Mpc, all but one known galaxy lies within one of the groups or associations that have been identified.Comment: 50 pages, 2 tables, 15 encapsulated figures, 1 (3 part) jpg figure. Submitted to Astronomical Journa

    The Local Velocity Anomaly

    Full text link
    There is a velocity discontinuity at about 7 Mpc between the galaxies of the Local Sheet that are moving together with low internal velocity dispersion and the adjacent structures. The Local Sheet bounds the Local Void. The Local Sheet is determined to have a peculiar velocity of 260 km/s away from the center of the void. In order for this large velocity to be generated by an absence of gravity, the Local Void must be at least 45 Mpc in diameter and be very empty.Comment: Invited review, "Galaxies in the Local Volume", Sydney, 8-13 July, 2007. eds. B. Koribalski & H. Jerjen, Astrophys. & Space Sci. Proceed. 10 pages with 7 figure

    The Correlation Between Galaxy HI Linewidths and K' Luminosities

    Get PDF
    The relationship between galaxy luminosities and rotation rates is studied with total luminosities in the K' band. Extinction problems are essentially eliminated at this band centered at 2.1 micron. A template luminosity-linewidth relation is derived based on 65 galaxies drawn from two magnitude-limited cluster samples. The zero-point is determined using 4 galaxies with accurately known distances. The calibration is applied to give the distance to the Pisces Cluster (60 Mpc) at a redshift in the CMB frame of 4771 km/s. The resultant value of the Hubble Constant is 81 km/s/Mpc. The largest sources of uncertainty arises from the small number of zero-point calibrators at this time at K' and present application to only one cluster.Comment: 13 pages including 5 figures and 2 tables. Accepted for publication in Astrophysical Journa

    Broadening of Spectral Lines due to Dynamic Multiple Scattering and the Tully-Fisher Relation

    Full text link
    The frequency shift of spectral lines is most often explained by the Doppler Effect in terms of relative motion, whereas the Doppler broadening of a particular line mainly depends on the absolute temperature. The Wolf effect on the other hand deals with the correlation induced spectral change and explains both the broadening and shift of the spectral lines. In this framework a relation between the width of the spectral line is related to the redshift z for the line and hence with the distance. For smaller values of z a relation similar to the Tully-Fisher relation can be obtained and for larger values of z a more general relation can be constructed. The derivation of this kind of relation based on dynamic multiple scattering theory may play a significant role in explaining the overall spectra of quasi stellar objects. We emphasize that this mechanism is not applicable for nearby galaxies, z≀1z \leq 1.Comment: 18 pages, 5 figures, revised Version has been submitted to Physical Review A. (2nd author's affiliation corrected

    Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches

    Get PDF
    Glycosaminoglycan polysaccharides play critical roles in many cellular processes, ranging from viral invasion and angiogenesis to spinal cord injury. Their diverse biological activities are derived from an ability to regulate a remarkable number of proteins. However, few methods exist for the rapid identification of glycosaminoglycan–protein interactions and for studying the potential of glycosaminoglycans to assemble multimeric protein complexes. Here, we report a multidisciplinary approach that combines new carbohydrate microarray and computational modeling methodologies to elucidate glycosaminoglycan–protein interactions. The approach was validated through the study of known protein partners for heparan and chondroitin sulfate, including fibroblast growth factor 2 (FGF2) and its receptor FGFR1, the malarial protein VAR2CSA, and tumor necrosis factor-α (TNF-α). We also applied the approach to identify previously undescribed interactions between a specific sulfated epitope on chondroitin sulfate, CS-E, and the neurotrophins, a critical family of growth factors involved in the development, maintenance, and survival of the vertebrate nervous system. Our studies show for the first time that CS is capable of assembling multimeric signaling complexes and modulating neurotrophin signaling pathways. In addition, we identify a contiguous CS-E-binding site by computational modeling that suggests a potential mechanism to explain how CS may promote neurotrophin-tyrosine receptor kinase (Trk) complex formation and neurotrophin signaling. Together, our combined microarray and computational modeling methodologies provide a general, facile means to identify new glycosaminoglycan–protein–protein interactions, as well as a molecular-level understanding of those complexes

    PKS 1830-211: A Face-On Spiral Galaxy Lens

    Get PDF
    We present new Hubble Space Telescope images of the gravitational lens PKS 1830-211, which allow us to characterize the lens galaxy and update the determination of the Hubble constant from this system. The I-band image shows that the lens galaxy is a face-on spiral galaxy with clearly delineated spiral arms. The southwestern image of the background quasar passes through one of the spiral arms, explaining the previous detections of large quantities of molecular gas and dust in front of this image. The lens galaxy photometry is consistent with the Tully-Fisher relation, suggesting the lens galaxy is a typical spiral galaxy for its redshift. The lens galaxy position, which was the main source of uncertainty in previous attempts to determine H_0, is now known precisely. Given the current time delay measurement and assuming the lens galaxy has an isothermal mass distribution, we compute H_0 = 44 +/- 9 km/s/Mpc for an Omega_m = 0.3 flat cosmological model. We describe some possible systematic errors and how to reduce them. We also discuss the possibility raised by Courbin et al. (2002), that what we have identified as a single lens galaxy is actually a foreground star and two separate galaxies.Comment: 21 pp., 4 figs., accepted by ApJ, section added to discuss related work by Courbin et al. (astro-ph/0202026

    Polar Ring Galaxies and the Tully Fisher relation: implications for the dark halo shape

    Full text link
    We have investigated the Tully-Fisher relation for Polar Ring Galaxies (PRGs), based on near infrared, optical and HI data available for a sample of these peculiar objects. The total K-band luminosity, which mainly comes from the central host galaxy, and the measured HI linewidth at 20% of the peak line flux density, which traces the potential in the polar plane, place most polar rings of the sample far from the Tully-Fisher relation defined for spiral galaxies, with many PRGs showing larger HI linewidths than expected for the observed K band luminosity. This result is confirmed by a larger sample of objects, based on B-band data. This observational evidence may be related to the dark halo shape and orientation in these systems, which we study by numerical modeling of PRG formation and dynamics: the larger rotation velocities observed in PRGs can be explained by a flattened polar halo, aligned with the polar ring.Comment: 22 pages, 8 postscript figures, accepted for publication in Astrophysical Journa
    • 

    corecore