2,525 research outputs found

    Higgs mediated lepton flavor violating tau decays τμγ\tau \to \mu \gamma and τμγγ\tau \to \mu \gamma \gamma in effective theories

    Full text link
    The size of the branching ratios for the τμγ\tau \to \mu \gamma and τμγγ\tau \to \mu \gamma \gamma decays induced by a lepton flavor violating Higgs interaction HτμH\tau \mu is studied in the frame of effective field theories. The best constraint on the HτμH\tau \mu vertex, derived from the know measurement on the muon anomalous magnetic moment, is used to impose the upper bounds Br(τμγ)<2.5×1010Br(\tau \to \mu \gamma)<2.5\times 10^{-10} and Br(τμγγ)<2.3×1012Br(\tau \to \mu \gamma \gamma)<2.3\times 10^{-12}, which are more stringent than current experimental limits on this class of transitions.Comment: 6 pages, 3 figure

    The Atmospheric Monitoring System of the JEM-EUSO Space Mission

    Full text link
    An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower) are measured with an accuracy better than 30\% primary energy and 120 g/cm2g/cm^2 depth of maximum development for EAS occurring either in clear sky or with the EAS depth of maximum development above optically thick cloud layers. Moreover a very novel radiometric retrieval technique considering the LIDAR shots as calibration points, that seems to be the most promising retrieval algorithm is under development to infer the Cloud Top Height (CTH) of all kind of clouds, thick and thin clouds in the FoV of the JEM-EUSO space telescope

    Enhanced Coupling Values in Coupled Microstrip Lines using Metamaterials

    Get PDF
    In this paper, we show how metamaterials can be used to enhance the coupling values of microstrip directional couplers. Coupling between regular coplanar microstrip lines, in fact, is limited, due to the small ratios between the characteristic impedances of even and odd TEM modes supported by the structure. The broadside configuration or the employment of an overlay are often utilized to overcome this limitation, leading, however, to more bulky components. On the other hand, the employment of metamaterials with a negative real part of the permittivity is able to increase the coupling values, while keeping the profile of the structure very low. A quasi-static model of the structure is developed and physical insights on the operation of the proposed component and on the role of the metamaterial loading are also given. Simple design formulae derived through a conformal mapping technique are presented and validated through proper full wave numerical simulations

    Spacelab 3 flight experiment No. 3AFT23: Autogenic-feedback training as a preventive method for space adaptation syndrome

    Get PDF
    Space adaptation syndrome is a motion sickness-like disorder which affects up to 50 percent of all people exposed to microgravity in space. This experiment tested a physiological conditioning procedure (Autogenic-Feedback Training, AFT) as an alternative to pharmacological management. Four astronauts participated as subjects in this experiment. Crewmembers A and B served as treatment subjects. Both received preflight training for control of heart rate, respiration rate, peripheral blood volume, and skin conductance. Crewmembers C and D served as controls (i.e., did not receive training). Crewmember A showed reliable control of his own physiological responses, and a significant increase in motion sickness tolerance after training. Crewmember B, however, demonstrated much less control and only a moderate increase in motion sickness tolerance was observed after training. The inflight symptom reports and physiological data recordings revealed that Crewmember A did not experience any severe symptom episodes during the mission, while Crewmember B reported one severe symptom episode. Both control group subjects, C and D (who took antimotion sickness medication), reported multiple symptom episodes on mission day 0. Both inflight data and crew reports indicate that AFT may be an effective countermeasure. Additional data must be obtained inflight (a total of eight treatment and eight control subjects) before final evaluation of this treatment can be made
    corecore