160 research outputs found

    Directed polymer in a random medium of dimension 1+1 and 1+3: weights statistics in the low-temperature phase

    Full text link
    We consider the low-temperature T<TcT<T_c disorder-dominated phase of the directed polymer in a random potentiel in dimension 1+1 (where Tc=T_c=\infty) and 1+3 (where Tc<T_c<\infty). To characterize the localization properties of the polymer of length LL, we analyse the statistics of the weights wL(r)w_L(\vec r) of the last monomer as follows. We numerically compute the probability distributions P1(w)P_1(w) of the maximal weight wLmax=maxr[wL(r)]w_L^{max}= max_{\vec r} [w_L(\vec r)], the probability distribution Π(Y2)\Pi(Y_2) of the parameter Y2(L)=rwL2(r)Y_2(L)= \sum_{\vec r} w_L^2(\vec r) as well as the average values of the higher order moments Yk(L)=rwLk(r)Y_k(L)= \sum_{\vec r} w_L^k(\vec r). We find that there exists a temperature Tgap<TcT_{gap}<T_c such that (i) for T<TgapT<T_{gap}, the distributions P1(w)P_1(w) and Π(Y2)\Pi(Y_2) present the characteristic Derrida-Flyvbjerg singularities at w=1/nw=1/n and Y2=1/nY_2=1/n for n=1,2..n=1,2... In particular, there exists a temperature-dependent exponent μ(T)\mu(T) that governs the main singularities P1(w)(1w)μ(T)1P_1(w) \sim (1-w)^{\mu(T)-1} and Π(Y2)(1Y2)μ(T)1\Pi(Y_2) \sim (1-Y_2)^{\mu(T)-1} as well as the power-law decay of the moments Yk(i)ˉ1/kμ(T) \bar{Y_k(i)} \sim 1/k^{\mu(T)}. The exponent μ(T)\mu(T) grows from the value μ(T=0)=0\mu(T=0)=0 up to μ(Tgap)2\mu(T_{gap}) \sim 2. (ii) for Tgap<T<TcT_{gap}<T<T_c, the distribution P1(w)P_1(w) vanishes at some value w0(T)<1w_0(T)<1, and accordingly the moments Yk(i)ˉ\bar{Y_k(i)} decay exponentially as (w0(T))k(w_0(T))^k in kk. The histograms of spatial correlations also display Derrida-Flyvbjerg singularities for T<TgapT<T_{gap}. Both below and above TgapT_{gap}, the study of typical and averaged correlations is in full agreement with the droplet scaling theory.Comment: 13 pages, 29 figure

    Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years) in natural transition from their deciduous to a permanent dentition and related the microbial profiles to their oral health status. The microbial composition of saliva was assessed by barcoded pyrosequencing of the V5-V6 hypervariable regions of the 16 S rRNA, as well as by using phylogenetic microarrays.</p> <p>Results</p> <p>Pyrosequencing reads (126174 reads, 1045 unique sequences) represented 8 phyla and 113 higher taxa in saliva samples. Four phyla - Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria - predominated in all groups. The deciduous dentition harboured a higher proportion of Proteobacteria (Gammaproteobacteria, Moraxellaceae) than Bacteroidetes, while in all other groups Bacteroidetes were at least as abundant as Proteobacteria. Bacteroidetes (mainly genus <it>Prevotella</it>), Veillonellaceae family, Spirochaetes and candidate division TM7 increased with increasing age, reflecting maturation of the microbiome driven by biological changes with age.</p> <p>Microarray analysis enabled further analysis of the individual salivary microbiota. Of 350 microarray probes, 156 gave a positive signal with, on average, 77 (range 48-93) probes per individual sample.</p> <p>A caries-free oral status significantly associated with the higher signal of the probes targeting <it>Porphyromonas catoniae </it>and <it>Neisseria flavescens</it>.</p> <p>Conclusions</p> <p>The potential role of <it>P. catoniae </it>and <it>N. flavescens </it>as oral health markers should be assessed in large-scale clinical studies. The combination of both, open-ended and targeted molecular approaches provides us with information that will increase our understanding of the interplay between the human host and its microbiome.</p

    Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics

    Full text link
    This paper presents a new method for the integration of the equations of motion of constrained multibody systems in descriptor form. The method is based on the penalty-Augmented Lagrangian formulation and uses massorthogonal projections for the solution to satisfy the kinematic constraint conditions. The number of equations being solved is equal to the number of states, and does not depend on the number of constraint conditions. Therefore, the method is particularly suitable for systems with redundant constraints, singular configurations or topology changes. The major advantage of the new method relies on the fact that for a low computational cost, the constraints in positions, velocities and accelerations are satisfied to machine precision during the numerical integration. This process is efficiently done by means of a mass-orthogonal projection without the need for coordinate partitioning or reduction to a minimum set of coordinates. The projection scheme allows for a more accurate and robust integration of the equations of motion since constraint violations constitute one of the primary sources of numerical errors and instabilities during the integration process. The proposed projection is also applied to the classical Lagrangian approach, thus eliminating the need for further stabilization as well as the selection of parameters in Baumgarte's method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43334/1/11071_2005_Article_BF01833296.pd

    Cardiac Alpha-Myosin (MYH6) Is the Predominant Sarcomeric Disease Gene for Familial Atrial Septal Defects

    Get PDF
    Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region) in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R). These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII

    Genetic Variation in the Proximal Promoter of ABC and SLC Superfamilies: Liver and Kidney Specific Expression and Promoter Activity Predict Variation

    Get PDF
    Membrane transporters play crucial roles in the cellular uptake and efflux of an array of small molecules including nutrients, environmental toxins, and many clinically used drugs. We hypothesized that common genetic variation in the proximal promoter regions of transporter genes contribute to observed variation in drug response. A total of 579 polymorphisms were identified in the proximal promoters (−250 to +50 bp) and flanking 5′ sequence of 107 transporters in the ATP Binding Cassette (ABC) and Solute Carrier (SLC) superfamilies in 272 DNA samples from ethnically diverse populations. Many transporter promoters contained multiple common polymorphisms. Using a sliding window analysis, we observed that, on average, nucleotide diversity (π) was lowest at approximately 300 bp upstream of the transcription start site, suggesting that this region may harbor important functional elements. The proximal promoters of transporters that were highly expressed in the liver had greater nucleotide diversity than those that were highly expressed in the kidney consistent with greater negative selective pressure on the promoters of kidney transporters. Twenty-one promoters were evaluated for activity using reporter assays. Greater nucleotide diversity was observed in promoters with strong activity compared to promoters with weak activity, suggesting that weak promoters are under more negative selective pressure than promoters with high activity. Collectively, these results suggest that the proximal promoter region of membrane transporters is rich in variation and that variants in these regions may play a role in interindividual variation in drug disposition and response

    Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

    Get PDF
    The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80–93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80–93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA

    Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drug–Drug Interactions

    Get PDF
    ABSTRACT: The hepatic organic anion transporting poly-peptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug−drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors

    Alteration in P-glycoprotein Functionality Affects Intrabrain Distribution of Quinidine More Than Brain Entry—A Study in Rats Subjected to Status Epilepticus by Kainate

    Get PDF
    This study aimed to investigate the use of quinidine microdialysis to study potential changes in brain P-glycoprotein functionality after induction of status epilepticus (SE) by kainate. Rats were infused with 10 or 20 mg/kg quinidine over 30 min or 4 h. Plasma, brain extracellular fluid (brain ECF), and end-of-experiment total brain concentrations of quinidine were determined during 7 h after the start of the infusion. Effect of pretreatment with tariquidar (15 mg/kg, administered 30 min before the start of the quinidine infusion) on the brain distribution of quinidine was assessed. This approach was repeated in kainate-treated rats. Quinidine kinetics were analyzed with population modeling (NONMEM). The quinidine microdialysis assay clearly revealed differences in brain distribution upon changes in P-glycoprotein functionality by pre-administration of tariquidar, which resulted in a 7.2-fold increase in brain ECF and a 40-fold increase in total brain quinidine concentration. After kainate treatment alone, however, no difference in quinidine transport across the blood–brain barrier was found, but kainate-treated rats tended to have a lower total brain concentration but a higher brain ECF concentration of quinidine than saline-treated rats. This study did not provide evidence for the hypothesis that P-glycoprotein function at the blood–brain barrier is altered at 1 week after SE induction, but rather suggests that P-glycoprotein function might be altered at the brain parenchymal level
    corecore