719 research outputs found

    New Data and Tools for Integrating Discrete and Continuous Population Modeling Strategies

    Full text link
    Realistic population models have interactions between individuals. Such interactions cause populations to behave as systems with nonlinear dynamics. Much population data analysis is done using linear models assuming no interactions between individuals. Such analyses miss strong influences on population behavior and can lead to serious errors—especially for infectious diseases. To promote more effective population system analyses, we present a flexible and intuitive modeling framework for infection transmission systems. This framework will help population scientists gain insight into population dynamics, develop theory about population processes, better analyze and interpret population data, design more powerful and informative studies, and better inform policy decisions. Our framework uses a hierarchy of infection transmission system models. Four levels are presented here: deterministic compartmental models using ordinary differential equations (DE); stochastic compartmental (SC) models that relax assumptions about population size and include stochastic effects; individual event history models (IEH) that relax the SC compartmental structure assumptions by allowing each individual to be unique. IEH models also track each individual's history, and thus, allow the simulation of field studies. Finally, dynamic network (DNW) models relax the assumption of the previous models that contacts between individuals are instantaneous events that do not affect subsequent contacts. Eventually it should be possible to transit between these model forms at the click of a mouse. An example is presented dealing with Cryptosporidium . It illustrates how transiting model forms helps assess water contamination effects, evaluate control options, and design studies of infection transmission systems using nucleotide sequences of infectious agents.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75616/1/j.1749-6632.2001.tb02756.x.pd

    Using non-homogeneous point process statistics to find multi-species event clusters in an implanted semiconductor

    Get PDF
    The Poisson distribution of event-to-ith-nearest-event radial distances is well known for homogeneous processes that do not depend on location or time. Here we investigate the case of a non-homogeneous point process where the event probability (and hence the neighbour configuration) depends on location within the event space. The particular non-homogeneous scenario of interest to us is ion implantation into a semiconductor for the purposes of studying interactions between the implanted impurities. We calculate the probability of a simple cluster based on nearest neighbour distances, and specialise to a particular two-species cluster of interest for qubit gates. We show that if the two species are implanted at different depths there is a maximum in the cluster probability and an optimum density profile

    Gas loading of graphene-quartz surface acoustic wave devices

    Get PDF
    Copyright © 2013 AIP PublishingGraphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.Royal Societ

    Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case

    Get PDF
    Simulation optimisation offers great opportunities in the design and optimisation of complex systems. In the presence of multiple objectives, there is usually no single solution that performs best on all objectives. Instead, there are several Pareto-optimal (efficient) solutions with different trade-offs which cannot be improved in any objective without sacrificing performance in another objective. For the case where alternatives are evaluated on multiple stochastic criteria, and the performance of an alternative can only be estimated via simulation, we consider the problem of efficiently identifying the Pareto-optimal designs out of a (small) given set of alternatives. We present a simple myopic budget allocation algorithm for multi-objective problems and propose several variants for different settings. In particular, this myopic method only allocates one simulation sample to one alternative in each iteration. This paper shows how the algorithm works in bi-objective problems under different settings. Empirical tests show that our algorithm can significantly reduce the necessary simulation budget

    Feasibility of tumour-focused adaptive radiotherapy for bladder cancer on the MR-linac.

    Get PDF
    Bladder tumour-focused magnetic resonance image-guided adaptive radiotherapy using a 1.5 Tesla MR-linac is feasible. A full online workflow adapting to anatomy at each fraction is achievable in approximately 30 min. Intra-fraction bladder filling did not compromise target coverage with the class solution employed

    Multicentre phase II pharmacokinetic and pharmacodynamic study of OSI-7904L in previously untreated patients with advanced gastric or gastroesophageal junction adenocarcinoma

    Get PDF
    A two-stage Simon design was used to evaluate the response rate of OSI-7904L, a liposome encapsulated thymidylate synthase inhibitor, in advanced gastric and/or gastroesophageal adenocarcinoma (A-G/GEJA), administered intravenously at 12 mg m−2 over 30 min every 21 days. Fifty patients were treated. Median age was 64 years (range 35–82), 62% were male and 89% had ECOG PS of 0/1. A total of 252 cycles were administered; median of 4 per patient (range 1–21). Twelve patients required dose reductions, mainly for skin toxicity. Investigator assessed response rate was 17.4% (95% CI 7.8–31.4) with one complete and seven partial responses in 46 evaluable patients. Twenty-one patients (42%) had stable disease. Median time to progression and survival were 12.4 and 36.9 weeks, respectively. NCI CTCAE Grade 3/4 neutropenia (14%) and thrombocytopenia (4%) were uncommon. The main G3/4 nonhaematological toxicities were skin-related 22%, stomatitis 14%, fatigue/lethargy 10%, and diarrhea 8%. Pharmacokinetic data showed high interpatient variability. Patients with higher AUC were more likely to experience G3/4 toxicity during cycle 1 while baseline homocysteine did not predict toxicity. Response did not correlate with AUC. Elevations in 2â€Č-dU were observed indicating target inhibition. Analysis of TS genotype, TS protein and expression did not reveal any correlation with outcome. OSI-7904L has activity in A-G/GEJA similar to other active agents and an acceptable safety profile

    Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac.

    Get PDF
    Introduction:MR-guided adapted radiotherapy (MRgART) using a high field MR-linac has recently become available. We report the estimated delivered fractional dose of the first five prostate cancer patients treated at our centre using MRgART and compare this to C-Arm linac daily Image Guided Radiotherapy (IGRT). Methods:Patients were treated using adapted treatment plans shaped to their daily anatomy. The treatments were recalculated on an MR image acquired immediately prior to treatment delivery in order to estimate the delivered fractional dose. C-arm linac non-adapted VMAT treatment plans were recalculated on the same MR images to estimate the fractional dose that would have been delivered using conventional radiotherapy techniques using a daily IGRT protocol. Results:95% and 93% of mandatory target coverage objectives and organ at risk dose constraints were achieved by MRgART and C-arm linac delivered dose estimates, respectively. Both delivery techniques were estimated to have achieved 98% of mandatory Organ At Risk (OAR) dose constraints whereas for the target clinical goals, 86% and 80% were achieved by MRgART and C-arm linac delivered dose estimates. Conclusions:Prostate MRgART can be delivered using the a high field MR-linac. Radiotherapy performed on a C-arm linac offers a good solution for prostate cancer patients who present with favourable anatomy at the time of reference imaging and demonstrate stable anatomy throughout the course of their treatment. For patients with critical OARs abutting target volumes on their reference image we have demonstrated the potential for a target dose coverage improvement for MRgART compared to C-arm linac treatment

    Navigating Authoritative Discourses in a Multilingual Classroom: Conversations With Policy and Practice

    Get PDF
    Using Bakhtinian concepts of persuasive and authoritative discourse, this study reports on science and English language arts instructional practices in a multilingual, rural, fourth-grade classroom in Kenya. Situated in English as a medium of instruction (EMI) and through the use of case study, the study explores classroom discourse data to illustrate how teachers use instructional practices to reproduce, contest, or navigate prevailing institutional monolingual policies when mediating students’ access to literacy and content. By analyzing classroom discourse, the authors argue that restrictive language policies that aspire for fixity disconnect multilingual learners from their daily realities. In contrast, they call for a (re)construction of multilingual pedagogy that capitalizes on the strengths of learners, teachers, and linguistic communities by embracing students’ languages and language varieties in language learning and literacy development. In particular, implications are drawn for the use of EMI for emerging bilingual and multilingual learners. The authors identify the need to prepare teachers for a multilingual reality through legitimizing multilingual pedagogies such as translanguaging

    Early Infrared Spectral Development of V1187 Scorpii (Nova Scorpii 2004 No. 2)

    Get PDF
    We report on an unprecedented infrared time series of spectra of V1187 Sco, a very fast ONeMg nova. The observations covered a 56 day period (2004 August 6-September 30) starting 2 days after the nova's peak brightness. Time evolution of the spectra revealed changing line strengths and profiles on timescales of less than a day to weeks as the nova evolved from early postmaximum to early coronal phases. When our ground-based optical and Spitzer Space Telescope data were combined, the wavelength coverage of 0.38-36 ÎŒm allowed an accurate spectral energy distribution to be derived when it was about 6 weeks after outburst. Developing double structure in the He I lines showed them changing from narrow to broad in only a few days. Using the O I lines in combination with the optical spectra, we derived a reddening of E(B - V) = 1.56 ± 0.08 and a distance of 4.9 ± 0.5 kpc. Modeling of the ejected material strongly suggested that it was geometrically thick with ΔR/R = 0.8-0.9 (more of a wind than a shell) and a low filling factor of order a few percent. The line shapes were consistent with a cylindrical jet, bipolar, or spherical Hubble flow expansion with a maximum speed of about -3000 km s-1. The central peak appeared to be more associated with the spherical component, while the two peaks (especially in HÎČ) suggested a ring with either a lower velocity component or with its axis inclined to the line of sight
    • 

    corecore